УДК 621.375.826

 $\underline{https://doi.org/10.26160/2307\text{-}342X\text{-}2021\text{-}}11\text{-}43\text{-}45}$

ПРИМЕНЕНИЕ МЕТОДА ПЛАНИРОВАНИЯ ЭКСПЕРИМЕНТА ДЛЯ ОПРЕДЕЛЕНИЯ ЛАЗЕРНЫХ ПАРАМЕТРОВ ПРИ РЕЗКЕ ДРЕВЕСИНЫ

Гафаров Э.К., Мевлют Ш.Т.

Крымский инженерно-педагогический университет имени Февзи Якубова, г.Симферополь

Ключевые слова: лазер, глубина реза, фокусировка, длинна волны, дерево.

Аннотация. В данной статье рассматривается влияние мощности лазерного излучения и скорости перемещения на качество и глубину реза древесины CO_2 — лазером с непрерывным излучением. Использован метод двух факторного анализа для определения основного параметра влияющего на глубину реза. Показана высокая корреляция между глубиной реза и мощностью лазерного излучения и отсутствие корреляции между скоростью перемещения лазерного излучения и глубиной реза при обработке древесины.

APPLICATION OF THE EXPERIMENT PLANNING METHOD TO DETERMINE LASER PARAMETERS WHEN CUTTING WOOD

Gafarov E.K., Mevlut Sh.T.

Crimean Engineering and Pedagogical University named after Fevzi Yakubov, Simferopol

Keywords: laser, cutting depth, focusing, wavelength, wood.

Abstract. This article examines the influence of the power of laser radiation and the speed of movement on the quality and depth of cut of wood with a CO2 – laser with continuous radiation. The method of two factor analysis is used to determine the main parameter affecting the depth of cut. A high correlation between the depth of cut and the power of laser radiation and the absence of a correlation between the speed of movement of the laser radiation and the depth of cut during wood processing are shown.

Постановка проблемы. Высокоточная лазерная резка по дереву – самый востребованный метод создания эксклюзивной продукции для мебельного производства и рекламной индустрии. Данная технология позволяет воплощать в жизнь любые дизайнерские идеи с помощью сложной фигурной резки или объемной гравировки. Высокая точность и скорость позволяют с ее помощью производить недорогие изделия с любыми формами и размерами в промышленных масштабах.

Анализ литературы. По технологии лазерной обработке написаны обширные специальные монографии [1-2]. Однако основное внимание уделяется обработке металлов и разделы, посвящённые не металлам, занимают небольшой объём. В монографии полностью посвященной лазерная обработка неметаллических материалов рассматриваются кристаллические пластмассовые материалы [3].

Цель работы. Основной целью данной работы является нахождение корреляции параметров резки древесины на примере широко распространенного ясеня с использованием CO_2 – лазера с непрерывным излучением.

Изложение основного материала

В данный работе мы использовали лазер мощностью до 100 Вт, с длинной волны излучения 10,6 мкм, непрерывного действия модель DirTec 9060. Мощность данного станка достаточна для разрезания древесину толщиной 19 мм. Для выполнения работы, сформулированной в качестве цели, использован метод планирования эксперимента [4], который позволяет получить математическую модель влияния различных факторов на глубину реза в виде уравнения регрессии. В качестве параметров варьирования выбраны мощность излучения и скорость резки, а зависимая функция глубина реза.

В соответствии с матрицей планирования эксперимента были выбраны следующие значения факторов:

- для мощности излучения P = 10 Bt, 20 Bt, 30 Bt;
- для скорости перемещения излучателя v = 10 мм/c, 20 мм/c, 30 мм/c;

На рисунке 1 приведен образец, полученный в эксперименте, на котором были сделаны измерения глубины реза.

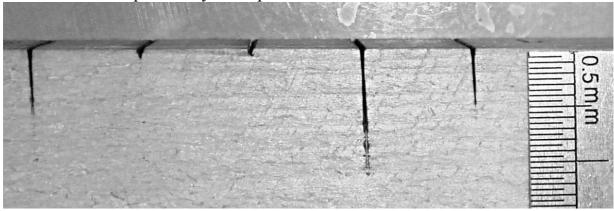


Рис. 1. Образец лазерных резов дерева

Уравнение регрессии имеет вид

$$Y = b_0 + b_1 x_1 + b_2 x_2 + b_{12} x_1 x_2, (1)$$

где x_1 — мощность лазерного излучения;

 x_2 – скорость перемещения лазерного излучения;

 b_0, b_1, b_2 - коэффициенты уравнения регрессии.

После вычисления значений коэффициентов получили уравнение регрессии, которое имеет следующий вид (формула 2):

$$Y = 3.01 + 2.53x_1 + 0.51 x_2 + 0.33 x_1 x_2. (2)$$

Из уравнения следует, что наибольшее влияние на глубину реза оказывает мощность лазерного излучения. Основная статистика регрессионного анализа приведена в таблице 1.

Табл. 1. Статистика уравнения регрессии

Регрессионная статистика	
Множественный R	0,99
R-квадрат	0,98
Нормированный R-квадрат	0,95
Стандартная ошибка	0,675
Наблюдения	4

Из таблицы 1 видно, что достоверность модели (R^2) составляет 0,98, что определяет высокую точность прогнозирования результатов будущих исследований.

Корреляционный график представлен на рисунке 2.

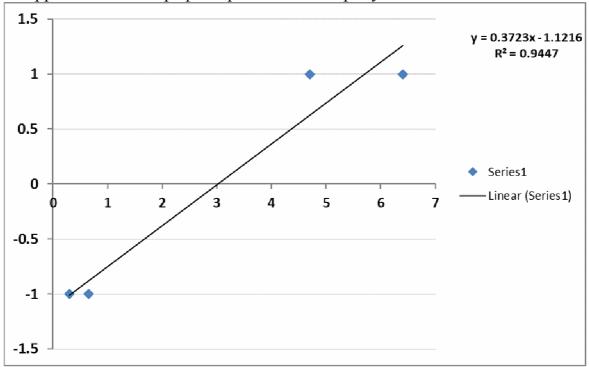


Рис. 2. Корреляция между глубиной реза (Y) и мощностью (X1)

Выводы

- 1. Проведен полный факторный эксперимент для изучения влияния двух технологических факторов на глубину реза в древесине при использовании для резки CO_2 лазера с непрерывным излучением.
- 2. Установлено, что основным параметром, влияющим на глубину реза древесины, является мощность лазерного излучения.

Список литературы

- 1. Лазерная и электронно-лучевая обработка материалов: справочник / Н.Н. Рыкалин, А.А. Углов, И.В. Зуев, А.Н. Кокора. М.: Машиностроение, 1985. 496 с.
- 2. Лосев В.Ф. Л79 Физические основы лазерной обработки материалов: учебное пособие / В.Ф. Лосев, Е.Ю. Морозова, В.П. Ципилев. Томск: Изд-во Томского политехнического университета, 2011. 199 с.
- 3. Григорьянц А.Г. Лазерная обработка неметаллических материалов: учебное пособие / А.Г. Григорьянц, А.А. Соколов. М.: Высшая школа, 1988. Книга 4-191 с.
- 4. Бронштейн И.Н. Справочник по математике / И.Н Бронштейн, К.А. Семендяев. М.: Наука, 1980. 976 с.

Сведения об авторах:

Гафаров Энвер Курсаитович – магистрант, КИПУ имени Февзи Якубова, г.Симферополь;

Мевлют Шевхи Тевабильевич – к.ф-м.н., доцент, КИПУ имени Февзи Якубова, г.Симферополь.