УДК 621.01

https://doi.org/10.26160/2307-342X-2021-11-10-13

К ВОПРОСУ О ДИНАМИКЕ НЕЗАМКНУТЫХ ШАРНИРНЫХ МЕХАНИЗМОВ

Парадеев С.Д., Ткач Д.Р., Чабунин И.С.

Московское высшее общевойсковое командное училище, г. Москва

Ключевые слова: незамкнутый шарнирный механизм, кинематические параметры, сила, момент, динамика, трение, вязкая ньютоновская среда.

Аннотация. В статье рассматривается движение звеньев незамкнутого шарнирного механизма с несколькими степенями свободы. В качестве примера выбран незамкнутый шарнирный механизм с тремя степенями свободы привода рабочих лопастей, движущихся в вязкой ньютоновской среде. Из полученных результатов следует, что при установившемся движении в вязкой ньютоновской среде шатуны механизма имеют постоянную частоту вращения, не зависящую от ее физико-механических свойств.

ON THE DYNAMICS OF OPEN-LOOP HINGE MECHANISMS

Paradeev S.D., Tkach D.R., Chabunin I.S. Moscow Higher Combined Arms Command School, Moscow

Keywords: non-closed hinge mechanism, kinematic parameters, force, moment, dynamics viscous Newtonian medium.

Abstract. The article deals with the movement of the links of an open hinge mechanism with several degrees of freedom. As an example, a non-closed hinge mechanism with three degrees of freedom of the drive of the working blades moving in a viscous Newtonian medium is chosen. From the results obtained, it follows that with steady motion in a viscous Newtonian medium, the connecting rods of the mechanism have a constant rotation frequency that does not depend on its physical and mechanical properties.

В настоящее время шарнирные механизмы имеют широкое применение в машиностроении. Поскольку их звенья соединены между собой низшими кинематическими парами, контакт в которых происходит по поверхностям, распределение передаваемого усилия в таких механизмах более благоприятно, чем в механизмах с высшими кинематическими парами. В этой связи их целесообразно использовать для передачи значительных усилий.

Отдельную группу шарнирных механизмов составляют так называемые незамкнутые шарнирные механизмы. Их кинематическое и силовое исследования имеют особенности по сравнению с замкнутыми механизмами, обусловленные степенью подвижности. В качестве примера рассмотрим движение звеньев шарнирного механизма (рис. 1), состоящего из кривошипа 1 с закрепленными на нем в шарнирах C_1 и C_2 шатунами 2, 3 и применяемого, например, в качестве привода рабочих лопастей [1]. Одной из основных задач расчета такого типа приводов является определение кинематических параметров движения звеньев шарнирного механизма, поскольку он имеет три степени свободы, а задано только вращательное движение кривошипа и, следовательно относительное вращение шатунов в шарнирах будет зависеть от сил сопротивления вязкой среды движению рабочих лопастей 1 (рис. 2).

Принимаем за обобщенные координаты углы поворота кривошипа φ_1 и шатунов φ_2 , φ_3 (рис. 1). Закон движения звеньев механизма описывается уравнениями Лагранжа второго рода [3]:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\varphi}_k}\right) - \frac{\partial T}{\partial \varphi_k} = Q_k; \ k = \overline{1, 3}, \tag{1}$$

где Q_k – обобщенная сила, соответствующая обобщенной координате φ_k ; *T* – кинетическая энергия механизма, *t* – время.

Рис. 1. Незамкнутый шарнирный механизм

Рис. 2. Конструктивное исполнение шарниров механизма

Кинетическая энергия механизма при вращательном движении звеньев определяется их угловыми скоростями и моментами инерции:

$$T = \frac{1}{2} \Big(J_1^* \dot{\varphi}_1^2 + J_2 \dot{\varphi}_2^2 + J_3 \dot{\varphi}_3^2 \Big), \tag{2}$$

где J_1^* – приведенный момент инерции, равный $J_1^* = J_1 + m_1 R_1^2 + m_2 R_2^2$; J_1 , J_2 , J_3 – моменты инерции соответственно кривошипа 1, шатунов 2 и 3; m_1 , m_2 – массы шатунов; R_1 , R_2 – геометрические параметры кривошипа.

Координаты точек K_1 , K_2 , K_3 , K_4 приложения сил, действующих на шатуны, можно представить следующими соотношениями:

$$\begin{aligned} x_1 &= R_1 \cos \varphi_1 + r_1 \cos \varphi_2; \ x_2 &= R_1 \cos \varphi_1 - r_1 \cos \varphi_2; \ x_3 &= -R_2 \cos \varphi_1 + r_2 \cos \varphi_3; \\ x_4 &= -R_2 \cos \varphi_1 - r_2 \cos \varphi_3; \ y_1 &= R_1 \sin \varphi_1 + r_1 \sin \varphi_2; \ y_2 &= R_1 \sin \varphi_1 - r_1 \sin \varphi_2; \\ y_3 &= -R_2 \sin \varphi_1 + r_2 \sin \varphi_3; \ y_4 &= -R_2 \sin \varphi_1 - r_2 \sin \varphi_3. \end{aligned}$$
(3)

Существенное влияние на режим движения шатунов оказывает трение в шарнирах, поэтому обобщенные силы находим с учетом моментов трения M_1 и M_2 в кинематических парах C_1 и C_2 :

$$Q_{k} = \Omega \frac{\partial \varphi_{1}}{\partial \varphi_{k}} - \sum_{j=1}^{2} \left[M_{j} \frac{\partial}{\partial \varphi_{k}} (\varphi_{1} - \varphi_{j+1}) \right] + \sum_{i=1}^{4} \left(F_{ix} \frac{\partial x_{i}}{\partial \varphi_{k}} + F_{iy} \frac{\partial y_{i}}{\partial \varphi_{k}} \right), \quad (4)$$

где Ω – момент трения в шарнире $O; M_i$ – момент трения в шарнире C_i .

Величина действующей на движущуюся в вязкой ньютоновской среде рабочую лопасть силы *F* прямо пропорциональна ее скорости *V* [2]:

$$\overrightarrow{F_i} = -A\overrightarrow{V_i}; \ F_{ix} = -A\dot{x}_i; \ F_{iy} = -A\dot{y}_i,$$
(5)

где A – коэффициент, зависящий только от геометрических параметров рабочей лопасти и вязкости ньютоновской среды; F_{ix} , F_{iy} и \dot{x}_i , \dot{y}_i – соответственно,

проекции приложенной в точке K_i шатуна силы $\overrightarrow{F_i}$ и скорости $\overrightarrow{V_i}$ точки K_i на оси координат (рис. 1).

Подставляя в выражение (4) частные производные от координат точек приложения сил (3) по соответствующим обобщенным координатам, находим с учетом выражений (5) значения обобщенных сил:

$$Q_1 = \Omega - (M_1 + M_2) - 2A\dot{\varphi}_1 (R_1^2 + R_2^2); \quad Q_2 = M_1 - 2Ar_1^2 \dot{\varphi}_2; \quad Q_3 = M_2 - 2Ar_2^2 \dot{\varphi}_3. \quad (6)$$

После преобразования уравнений (1) с учетом выражений (2) и (6) получаем дифференциальные уравнения движения звеньев механизма:

$$\ddot{\varphi}_{1} + \frac{2A(R_{1}^{2} + R_{2}^{2})\dot{\varphi}_{1}}{J_{1}^{*}} = \frac{\Omega - (M_{1} + M_{2})}{J_{1}^{*}}; \quad \ddot{\varphi}_{2} + \frac{2Ar_{1}^{2}\dot{\varphi}_{2}}{J_{2}} = \frac{M_{1}}{J_{2}}; \quad \ddot{\varphi}_{3} + \frac{2Ar_{2}^{2}\dot{\varphi}_{3}}{J_{3}} = \frac{M_{2}}{J_{3}}. \quad (7)$$

Значения моментов трения M_1 и M_2 в шарнирах C_1 и C_2 определяются реакциями \vec{R}_B и \vec{R}_E (рис. 2). Силы инерции и вес шатунов можно не учитывать, поскольку они значительно меньше сил сопротивления вязкой среды движению рабочих лопастей. Кроме того, практический интерес будет представлять случай, когда частота вращения кривошипа постоянна ($\phi_1 = \omega_1$).

Конструктивное исполнение шарниров механизма представлено на рис. 2. Обозначив проекции реакций \vec{R}_B и \vec{R}_E на оси координат *x* и *y* рассматриваемого шатуна соответственно R_{Bx} , R_{By} и R_{Ex} , R_{Ey} , проекции сил трения \vec{T}_B и \vec{T}_E на координатные оси можно представить следующим образом:

$$T_{Bx} = f^* R_{By}; T_{By} = f^* R_{Bx}; T_{Ex} = f^* R_{Ey}; T_{Ey} = f^* R_{Ex},$$
(8)

где *f*^{*} – приведенный коэффициент трения.

Тогда уравнения равновесия шатуна в проекциях на оси координат с учетом принятых допущений записываются в виде:

$$T_{Ex} + T_{Bx} + R_{Ex} + R_{Ex} + F_{1x} + F_{2x} = 0; \quad T_{Ey} + T_{By} + R_{Ey} + R_{Ey} + F_{1y} + F_{2y} = 0; aT_{Ey} + aR_{Ey} + h(F_{1y} + F_{2y}) = 0; \quad aR_{Ex} + aT_{Ex} - h(F_{1x} + F_{2x}) = 0.$$
(9)

После преобразований системы уравнений (9) с учетом выражений (3), (5) и (8) получим:

$$R_{Bx} + R_{Ex} + f^* R_{By} + f^* R_{Ey} = -m_1 R_1 \dot{\varphi}_1^2 \cos \varphi_1 - 2A R_1 \dot{\varphi}_1 \sin \varphi_1;$$

- $f^* R_{Bx} + f^* R_{Ex} + R_{By} + R_{Ey} = m_1 R_1 \dot{\varphi}_1^2 \sin \varphi_1 + 2A R_1 \dot{\varphi}_1 \cos \varphi_1;$ (10)

$$-af^*R_{Ex} + aR_{Ey} = 2AhR_1\dot{\varphi}_1\cos\varphi_1; \ -aR_{Ex} + af^*R_{Ey} = 2AhR_1\dot{\varphi}_1\sin\varphi_1.$$

Решая систему уравнений (10), находим значения реакций R_B и R_E :

$$R_B = \frac{2R_1 A(h-a)\dot{\varphi}_1}{a\sqrt{1+f^{*2}}}; \ R_E = \frac{2R_1 Ah\dot{\varphi}_1}{a\sqrt{1+f^{*2}}}.$$
 (11)

Выражаем момент трения в шарнире через вычисленные реакции:

$$M_1 = 0.5 f^* d_1 (R_B + R_E), \tag{12}$$

где d_1 – диаметр цапфы (рис. 2).

Подставив формулы (11) в выражение (12), определяем момент трения M_1 в шарнире C_1 . Аналогично рассчитывается и момент трения M_2 в шарнире C_2 :

$$M_{1} = \frac{\omega_{1}R_{1}d_{1}f^{*}A(2h-a)}{a\sqrt{1+f^{*2}}}; M_{2} = \frac{\omega_{1}R_{2}d_{1}f^{*}A(2h-a)}{a\sqrt{1+f^{*2}}}.$$
 (13)

Движущий момент на валу кривошипа находим из первого уравнения системы уравнений (7) с учетом выражения (13):

$$\Omega = A \omega_1 \left[2 \left(R_1^2 + R_2^2 \right) + \left(R_1 + R_2 \right) \frac{f^* d_1}{\sqrt{1 + f^{*2}}} \left(\frac{2h}{a} - 1 \right) \right].$$
(14)

Решая дифференциальные уравнения (7), определяем угловые скорости шатунов:

$$\dot{\phi}_{2} = \left(\dot{\phi}_{20} - \frac{M_{1}}{2Ar_{1}^{2}}\right)e^{-\frac{2Ar_{1}^{2}t}{J_{2}}} + \frac{M_{1}}{2Ar_{1}^{2}}; \quad \dot{\phi}_{3} = \left(\dot{\phi}_{30} - \frac{M_{2}}{2Ar_{2}^{2}}\right)e^{-\frac{2Ar_{2}^{2}t}{J_{3}}} + \frac{M_{2}}{2Ar_{2}^{2}}, \quad (15)$$

где $\dot{\phi}_{20}$, $\dot{\phi}_{30}$ – угловые скорости шатунов в начальный момент времени.

Анализ уравнений (15) показывает, что длительность переходного процесса не превышает 1 ... 20 секунд, а в установившемся движении шатуны вращаются с постоянной частотой ($\dot{\phi}_2 = \omega_2$, $\dot{\phi}_3 = \omega_3$):

$$\omega_2 = \frac{0.5f^* R_1 d_1 \omega_1 (2h-a)}{r_1^2 a \sqrt{1+f^{*2}}}; \ \omega_3 = \frac{0.5f^* R_2 d_1 \omega_1 (2h-a)}{r_2^2 a \sqrt{1+f^{*2}}}.$$

Передаточные отношения $i_{2,1}$ и $i_{3,1}$, как показывают расчеты, лежат в пределах от 0 до 1, т.е. шатуны вращаются вокруг двух параллельных осей.

Таким образом, шатуны рассматриваемого незамкнутого шарнирного механизма совершают сложное устойчивое движение, а точки K_1 , K_2 , K_3 , K_4 шатунов движутся по циклоидальным траекториям.

Список литературы

- 1. А.с. № 713583 СССР. Смеситель / Бахтюков В.М. –заявка №2579424 от 15.02.1978; опубл. 05.02.1980, Бюл. №5.
- 2. Бочков С.Л., Бахтюков В.М. Расчет основных кинематических параметров мешалок адаптивных бипланетарных смесителей. М.: МИХМ, 1980.
- 3. Тарг С.М. Краткий курс теоретической механики: Учебник, изд. 21-е.– М.: ЛЕНАНД, 2018. 424 с.

Сведения об авторах:

Парадеев Сергей Дмитриевич – к.т.н., доцент, доцент кафедры общепрофессиональных дисциплин, МВОКУ, г. Москва;

Ткач Даниил Романович – курсант, МВОКУ, г. Москва;

Чабунин Игорь Сергеевич – к.т.н., доцент, заведующий кафедрой общепрофессиональных дисциплин, МВОКУ, г. Москва.