УДК 681.5

https://doi.org/10.26160/2541-8637-2020-5-117-123

МЕТОДЫ АНАЛИЗА ТОЧНОСТИ СИСТЕМЫ УПРАВЛЕНИЯ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ ПРИ ДЕТЕРМИНИРОВАННЫХ ВОЗМУЩЕНИЯХ

Конева С.А., Цалоев В.М.

Севастопольский государственный университет, г. Севастополь

Ключевые слова: теплообмен, динамические характеристики, передаточная функция, объект управления, преобразование.

Аннотация. Рассматривается модель управляемого теплообменного аппарата конвективного типа в классе систем с распределенными параметрами. Преобразование Лапласа уравнений конвективного теплообмена позволяет построить модель теплообменного аппарата как объекта управления в области изображений. На этой основе предлагаются методы анализа динамических характеристик (весовой и единичной переходной функций) аппарата на строгой основе, полностью учитывающей аналитический характер изображений динамических характеристик.

METHODS OF ANALYSIS OF ACCURACY OF A CONTROL SYSTEM WITH DISTRIBUTED PARAMETERS UNDER DETERMINISTIC DISTURBANCES

Koneva S.A., Tsaloev V.M.

Sevastopol State University, Sevastopol

Keywords: heat exchange, dynamic characteristics, transitive function, object of management, transformation of Laplace.

Abstract. A model of a convective-type controlled heat exchanger in the class of systems with distributed parameters is considered. The Laplace transform of the equations of convective heat transfer allows you to build a model of a heat exchanger as a control object in the image area. On this basis, we propose methods for analyzing the dynamic characteristics (weight and unit transition functions) of the apparatus on a strict basis, which fully takes into account the analytical nature of the images of dynamic characteristics.

Введение. Методы исследования систем автоматического управления (САУ) теплообменными аппаратами (ТОА), сложных по своей природе (они относятся к классу систем с распределенными параметрами в силу свойств самого процесса теплообмена) известные в литературе (см., например, [1]), серьезно упрощают математические модели САУ ТОА и в недостаточной степени охватывают проблему анализа точности систем. Это обстоятельство делает актуальным разработку проблемы анализа точности с достаточно полным отражением характерных особенностей модели САУ ТОА как системы с распределенными параметрами. В настоящей работе продолжена разработка подхода к анализу САУ ТОА, представленного в [2,3], акцентируя внимание на задаче анализа точности системы.

Постановка задачи. В [2] для температуры подогреваемого в ТОА теплоносителя, рассматриваемой в виде T(x,t) – функции безразмерной координаты x и времени t соответственно, получены изображения T(x,p) по

Лапласу как в произвольном ($0 \le x \le 1$), так и в выходном сечении (x=1) ТОА (x = 1) относительная координата). Определяя ошибку управления как

$$\varepsilon(t) = T_3(t) - T(1,t),$$

где $T_3(t)$ -заданная температура на выходе ТОА, представим САУ структурной схемой, изображенной на рисунке 1.

Рис. 1. Структурная схема САУ теплообменом

В соответствии с полученными в [2,3] результатами передаточная функция объекта управления имеет вид

$$W_O(p) = \frac{a_2 b_3 \left(1 - e^{-A(p)}\right)}{q_0},$$

где $q_0(p) = vb_1p^2 + (+b_2v + b_1)p + b_2 - b_3$ – характеристический многочлен объекта управления $A(p) = b_1p + b_2 - \frac{b_3}{vp+1}$, а $\tau_0(p) = e^{-A(p)}T_0(p)$, $\tau_G(p) = \frac{-b_4}{A(p)} \Big[1 - e^{-A(p)} \Big] G(p)$ – приведенные возмущения.

Передаточную функцию регулятора будем рассматривать в виде $W_p(p) = \frac{b(p)}{a(p)}$, где заданные многочлены a(p), b(p) удовлетворят условию $\lim_{p\to\infty} \frac{b(p)}{pa(p)} \neq \infty$. Определим теперь передаточную функцию прямой цепи контура

как

$$W(p) = W_P(p)W_O(p) = \frac{c(p)}{q(p)} \left[1 - e^{-A(p)} \right], \tag{1}$$

где

$$c(p) = a_2 b_3 b(p), \ q(p) = \left[v b_1 p^2 + (b_2 v + b_1) p + b_2 - b_3 \right] a(p).$$
(2)

Рассмотрим далее вход - выходные соотношения замкнутой системы

$$T_3(1,p) = \Phi(p)T_3(p), \ T_G(1,p) = \Phi_G(p)G(p), \ T_0(1,p) = \Phi_0(p)T_0(p)$$
(3)

– ее реакции на задающее и возмущающие воздействия. Для передаточных функций замкнутой системы находим:

$$\Phi(p) = \frac{W(p)}{1 + W(p)} = \frac{c(p)}{Q(p)} \left[1 - e^{-A(p)} \right], \tag{4}$$

$$\Phi_G(p) = -\frac{b_4 \left[1 - e^{-A(p)}\right]}{[1 + W(p)]A(p)} = \frac{-b_4 (vp + 1)a(p)}{Q(p)} \left[1 - e^{-A(p)}\right],\tag{5}$$

$$\Phi_0(p) = \frac{e^{-A(p)}}{1 + W(p)} = \frac{q(p)}{Q(p)} e^{-A(p)}.$$
(6)

В этих соотношениях $Q(p) = q(p) + c(p) \left[1 - e^{-A(p)}\right]$ аналитическая функция, нули которой определяют полюсы передаточных функций (3)-(5). Для изображения ошибки $\varepsilon(t)$ с помощью вход–выходных соотношений (3) находим

$$\varepsilon(t) = \Phi_{\varepsilon}(p)T_{3}(p) - \Phi_{G}(p)G(p) - \Phi_{0}(p)T_{0}(p),$$
(7)

где

$$\Phi_{\varepsilon}(p) = 1 - \Phi(p) = \frac{1}{1 + W(p)} = \frac{q(p)}{Q(p)}.$$
(8)

Равенство (7) представляет собой вход-выходное соотношение для ошибки регулирования в виде суммы трех составляющих ошибки: задающего воздействия $T_3(p)$, возмущения от расхода G(p) и возмущения от температуры топлива $T_0(1, p)$ на входе ТОА. Рассмотрим задачу анализа ошибки регулирования на примере ее первой составляющей – ошибки от задающего воздействия $T_3(t)$. Интересно и важно выяснить, возможны ли традиционные методы анализа ошибки в рассматриваемой системе с распределенными параметрами.

Анализ точности САУ при детерминированных возмущениях. Метод системных коэффициентов. Одним из них является метод разложения установившейся ошибки в ряд по производным воздействия, или метод системных коэффициентов – коэффициентов ошибки. Покажем, что в нашем случае также возможно представление

$$\varepsilon(t) = c_0 T_3(t) + c_1 T_3(t) + c_2 T_3(t) + \dots,$$
(9)
ГДЕ $c_0 = \Phi_{\varepsilon}(0), \ c_1 = \frac{d\Phi_{\varepsilon}(0)}{dp}\Big|_{p=0}, \ c_2 = \frac{1}{2!} \frac{d^2 \Phi_{\varepsilon}(0)}{d^2 p}\Big|_{p=0}, \dots$

Представление (9) является разложением ошибки в ряд по производным воздействия (в данном случае – задающего). Оно имеет, как известно, асимптотический характер при t→∞. Итак, будем считать рассматриваемую систему регулирования конвективного теплообмена устойчивой. Пусть

$$g(t) = L^{-1} \{ \Phi(p) \}$$
(10)

оригинал передаточной функции (5) замкнутой системы. Введем в рассмотрение интеграл свертки

$$T(1,t) = \int_{0}^{t} g(\tau)T_{3}(t-\tau)d\tau$$
(11)

– оригинал изображения выхода замкнутой системы. Функция g(t) имеет смысл весовой функции замкнутой системы для ее реакции T(1,t) на задающее воздействие $T_3(t)$. Примем, что $T_3(t)$ является полиномиальным воздействием. Тогда при всяком фиксированном *t* справедливо разложение

$$T_3(t-\tau) = \sum_{k=0}^r \frac{1}{k!} T_3^{(k)}(t) (-\tau)^{(k)},$$
(12)

где $T_3^{(k)}(t) = \frac{d^k T_3(t)}{dt^k}$ и r – степень полинома, описывающего воздействия $T_3(t)$.

Подставляя (12) в (10), получаем

$$T(1,t) = \sum_{k=0}^{m} m_k(t) T_3^{(k)}(t), \qquad (13)$$

где

$$m_{k}(t) = \frac{1}{k!} \int_{0}^{t} (-\tau)^{k} g(\tau) d\tau$$
(14)

– моменты весовой функции (10). Теперь заметим, что по доказанному выше, устойчивая система устойчива экспоненциально. Это положение справедливо и для весовой функции как оригинала изображения (4). Другими словами

$$|g(t)| < \gamma e^{-\alpha t}, \quad 0 < \alpha \le -\operatorname{Re}\lambda_m < \ell, \quad m = 1, 2, ...,$$
(15)

где *ү*-подходящая константа. Поэтому справедливо утверждение.

Утверждение. Если рассматриваемая система устойчива, то существуют пределы при t→∞ для моментов (14)

$$C_k = \lim_{t \to \infty} m_k(t) = \frac{1}{k!} \int_0^\infty g(\tau) (-\tau)^k d\tau.$$
(16)

Действительно, из равенства (14) в силу неравенства (15) следует

$$\left|m_{k}(t)\right| \leq \gamma \mu_{k}(t), \tag{17}$$

где $\mu_k(t) = \frac{1}{k!} \int_0^t \tau^k e^{-\alpha \tau} d\tau$. Интегрируя по частям, находим

$$\mu_{k}(t) = -\frac{1}{\alpha k!} (-t)^{k} e^{-\alpha t} + \frac{1}{\alpha} \mu_{k-1}(t), \ k \ge 1.$$
(18)

При *k*=0 имеем
$$\mu_0(t) = \frac{1}{\alpha} (1 - e^{-\alpha t}), \ \mu_0(\infty) = \frac{1}{\alpha}$$

Из (18) следует, что если существует предел $\mu_{k-1}(\infty)$, то существует и предел $\mu_k(\infty) = \frac{1}{\alpha} \mu_{k-1}(\infty)$. Но при *k*=0 предел существует. Следовательно, он существует и при *k* =1,2,..., а значит, в силу неравенства (17) существует и предельное значение (16). **Утверждение доказано.**

Теперь заметим, что равенство (16) можно записать в виде

$$C_{k} = \int_{0}^{\infty} e^{-pt} g(t)(-t)^{k} dt \bigg|_{p=0} = \frac{d^{k}}{dp^{k}} \int_{0}^{\infty} e^{-pt} g(t) dt \bigg|_{p=0}.$$

Под знаком производной стоит передаточная функция $\Phi(p)$ замкнутой системы (см. соотношение (10)). Таким образом, окончательно получаем

$$\lim_{t \to \infty} m_k(t) = C_k = \frac{1}{k!} \frac{d^k \Phi(p)}{dp^k} \bigg|_{p=0}.$$
(19)

Из этого следует, что в устойчивой системе при больших t (формально при $t \rightarrow \infty$ в коэффициентах представления (13)) справедливо асимптотическое представление выхода замкнутой системы

$$T(1,t) = \sum_{k=0}^{r} C_k T_3^{(k)}(t), \qquad (20)$$

где коэффициенты разложения можно вычислить по соотношениям (19).

Заметим, что если изображение полиномиального задающего воздействия
$$T_3(t)$$
 степени *r* записать в виде $T_3(p) = \frac{1}{p^{r+1}} \tau_3(p)$, где $\tau_3(p)$ – многочлен степени

r, коэффициенты которого определяются по коэффициентам многочлена $T_3(t)$, то в устойчивой системе согласно полученным выше результатам будем иметь представление выхода системы следующим выражением:

$$T(1,t) = \frac{1}{r!} \frac{d^r}{dp^r} \tau_3(p) \Phi(p) \bigg|_{p=0} + \gamma e^{-\alpha t}, \quad \alpha = \min(\lambda, l) > 0.$$
(21)

Первое слагаемое в этом представлении является тем же многочленом, что и многочлен (20). Поэтому, сравнивая эти представления, видим, что равенство (20) имеет место с точностью до экспоненциально исчезающего слагаемого.

Соотношения (20), (21) принципиально в равной степени эффективны при анализе установившегося выхода замкнутой системы, обусловленного задающим воздействием полиномиального типа. Вместе с тем, соотношение (20) полезно для обобщений анализа установившегося выхода на случай и неполиномиальных задающих воздействий с ограниченными высшими производными. Кроме того, как в обычных системах, оно наглядно показывает влияние уровня воздействия, скорости его изменения, ускорения и т.д., что при расчетах и проектировании системы имеет свое значение. Полученное разложение (20) позволяет записать и соответствующее разложение для ошибки системы, обусловленной задающим воздействием. При $t \rightarrow \infty$ в устойчивой системе имеем

$$\varepsilon(t) = T_3(t) - T(1,t) = T_3(t) - \sum_{k=0}^r C_k T_3^{(k)}(t),$$

ИЛИ

$$\varepsilon(t) = (1 - C_0)T_3(t) - \sum_{k=1}^r C_k T_3^{(k)}(t).$$
(22)

Соотношение (22) перепишем в виде

$$\varepsilon(t) = c_0 T_3(t) + \sum_{k=1}^r c_k T_3^{(k)}(t) \,.$$
(23)

Теперь легко находим в силу (22) и (7)

$$c_0 = 1 - \Phi(0) = \Phi_{\varepsilon}(0), \ c_k = -C_k = -\frac{1}{k!} \frac{d^k \Phi(p)}{dp^k} \bigg|_{p=0} = \frac{1}{k!} \frac{d^k}{dp^k} \Phi_{\varepsilon}(p) \bigg|_{p=0}.$$

Отметим наглядность (23) в анализе таких структурных свойств системы, как статизм и астатизм. Например, для первого коэффициента ошибки имеем в соответствии с (1), (8)

$$c_0 = \Phi_{\varepsilon}(0) = \frac{1}{1 + W(0)} = \begin{cases} \frac{1}{1 + k}, & a(0) \neq 0\\ 0, & a(0) = 0, \end{cases}$$

где $W(0) = k = \frac{a_2 b_3 b(0)}{(b_2 - b_3) a(0)} \cdot [1 - e^{(b_2 - b_3)}]$ имеет место для систем статического

типа, и $W(0) = \infty$ – для систем астатического типа. Как и для обычных систем, в последнем случае установившаяся ошибка равна нулю при постоянном задающем воздействии. Нетрудно установить более общее утверждение.

Пусть
$$W_P(p) = \frac{b(p)}{a(p)} = \frac{b(p)}{p^{\ell}a_0(p)}$$
, где $\ell \ge 1$ и $b(0) \ne 0$, $a_0(0) \ne 0$. Тогда в

соответствии с (1) $W(p) = \frac{1}{p^{\ell}} \widehat{W}(p)$, где

$$\widehat{W}(p) = \frac{c(p)[1 - e^{-A(p)}]}{[vb_1p^2 + (b_2v + b_1)p + b_2 - b_3]a_0(p)}$$

следовательно,

$$\Phi_{\varepsilon}(p) = \frac{p^{\ell}}{p^{\ell} + \widehat{W}(p)}.$$
(24)

В этом случае ℓ коэффициентов ошибки равны нулю (аналогично обычным системам). Действительно, записав выражение (24) в виде

$$\Phi_{\mathbf{\varepsilon}}(p) = p^{\ell} \varphi(p),$$

где $\phi(p) = \frac{1}{p^{\ell} + \hat{W}(p)}$ – аналитическая в точке p=0 функция (т.е. имеющая все

производные $\phi^{(k)}(p)$ при p = 0) и дифференцируя $\Phi_{\epsilon}(p)$, получаем

$$\Phi_{\epsilon}^{(1)}(p) = \ell p^{\ell-1} \varphi(p) + p^{\ell} \varphi^{(1)}(p).$$

Дифференцируя еще раз, найдем

$$\Phi_{\varepsilon}^{(2)}(p) = \ell(\ell-1)p^{\ell-2}\varphi(p) + 2\ell p^{\ell-1}\varphi^{(1)}(p) + p^{\ell}\varphi^{(2)}(p), \text{ и т.д.}$$

Таким образом,

$$\Phi_{\varepsilon}^{(\ell-1)}(p) = \ell(\ell-1)(\ell-2)...1 \cdot p\varphi(p) + p^{2}\Psi(p).$$

При $\ell = 1$ имеем

$$c_0 = 0$$
, ho $c_1 = \varphi(0) = \frac{1}{\widehat{W}(0)} = \frac{c(0)[1 - e^{-A(0)}]}{(b_1 - b_3)a_0(0)} \neq 0$,

так как $c(0) = a_2 b_3 b(0)$ в силу (2). При $\ell > 1$ получаем:

$$\Phi_{\varepsilon}(0) = 0; \ \Phi_{\varepsilon}^{(1)}(0) = 0; \ \Phi_{\varepsilon}^{(\ell-1)}(0) = 0;$$

но, $\Phi_{\epsilon}^{(\ell)}(0) \neq 0$. Следовательно, $c_0 = 0$, $c_1 = 0$,..., $c_{\ell-1} = 0$. Это означает, что при полиномиальном воздействии $T_3(t)$ со степенью полинома равной $\ell - 1$, установившаяся ошибка равна нулю. Это положение обычно имеет практическое значение при $\ell = 1$, поскольку в случае $\ell \ge 2$ практически сложно обеспечить устойчивость системы.

Заключение. Выполненный анализ свидетельствует: если регулятор САУ ТОА астатического типа со степенью астатизма $\ell = 1$, ошибка в установившемся режиме для устойчивой системы равна нулю. Заметим также, что выполненное исследование может быть с точностью до обозначения повторено и для случаев двух других возмущающих воздействий в соотношениях (3).

Список литературы

- 1. Барабанов А.Т. Об одной одномерной задаче теплообмена / А.Т. Барабанов, С.А. Конева // Динамические системы. Симферополь. 2001. Вып.17. С.190-195.
- 2. Карслоу Г. Теплопроводность твердых тел / Г. Карслоу, Д. Егер. М.: Наука, 1964. 488 с.
- 3. Конева С.А. Анализ динамических характеристик теплообменного аппарата как одного класса объекта управления // Фундаментальные и прикладные проблемы техники и технологии. 2016. С. 17-24.
- 4. Кутателадзе С.С. Основы теории теплообмена. М.: Атомиздат, 1979. 415 с.
- 5. Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. 599 с.
- 6. Нелепин Р.А. Автоматическое управление судовыми энергетическими установками. Л.: Судостроение, 1986. 296 с.
- 7. Себиси Т. Конвективный теплообмен / Т. Себиси, П. Брэдшоу.– М.: Мир, 1987. 589 с.
- 8. Сыромятников В.Ф. Наладка автоматики судовых энергетических установок. Л.: Судостроение, 1980. 352 с.
- 9. Шевяков А.А. Управление тепловых объектов с распределенными параметрами / А.А. Шевяков, Р.В. Яковлева. М.: Энергоатомиздат, 1986.–208 с.
- 10. Шнейдер П. Инженерные проблемы теплопроводности. М., 1980. 478 с.

Сведения об авторах:

Конева Светлана Андреевна – к.т.н., доцент, заведующая кафедрой «Судовое электрооборудование», СевГУ, г. Севастополь;

Цалоев Владимир Муратович – старший преподаватель кафедры «Судовое электрооборудование», СевГУ, г. Севастополь.