JARiTS. 2022. Issue 30

https://doi.org/10.26160/2474-5901-2022-30-57-59

ПОДХОДЫ К ОБОСНОВАНИЮ БЕЗОПАСНОСТИ ЯДЕРНЫХ РЕАКТОРОВ, ОСНОВАННЫЕ НА ИДЕЯХ ТЕОРИИ ИГР

Окунев В.С.

Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия

Ключевые слова: ядерный реактор, безопасность, вероятностный подход, детерминистический подход, феноменологический подход, консервативный подход, реалистические коды.

Аннотация. В статье анализируется возможность использования теории игр в обосновании безопасности ядерных реакторов. Рассматриваются три известных подхода к анализу безопасности: вероятностный, детерминистический, феноменологический. Автор приходит к выводу о необходимости комплексного использования этих подходов. Наиболее предпочтительным следует считать формализм игры с мыслящим противником. Это соответствует консервативному и детерминистическому подходам.

APPROACHES TO JUSTIFYING THE SAFETY OF NUCLEAR REACTORS BASED ON THE IDEAS OF GAME THEORY

Okunev V.S.

Bauman Moscow State Technical University, Moscow, Russia

Keywords: nuclear reactor, safety, probabilistic approach, deterministic approach, phenomenological approach, conservative approach, realistic codes.

Abstract. The article analyzes the possibility of using game theory in justifying the safety of nuclear reactors. Three well-known approaches to safety analysis are considered: probabilistic, deterministic, and phenomenological. The author comes to the conclusion about the need for the integrated use of these approaches. The formalism of the game with a thinking opponent should be considered the most preferable. This is consistent with conservative and deterministic approaches.

Существуют два основных подхода к анализу безопасности ядерных реакторов: вероятностный и детерминистический [1]. Третий подход феноменологический [1] считать онжом частным случаем детерминистического, объективную Для учитывающим реальность. реализации подходов используют называемые ЭТИХ иногда так реалистические коды (реалистический подход) - высокоточные коды, не содержащие консервативных моделей [2], которые отражают стремление неопределенности исключить В результатах. неопределенности может быть настолько велика, что полученные результаты не будут иметь практическую значимость. Все три подхода следует использовать комплексно, поскольку каждый из них имеет свои достоинства и недостатки. Чем больше независимых подходов можно предложить и использовать, тем более обоснованным будет принятое решение. Для реализации комплексного использования различных подходов обратиться к теории игр [3]. Общую методологию принятия решений относят

к исследованию операций. Из множества теорий и методов, используемых в исследованиях операций, лишь теория оптимального управления доведена до «инженерного» уровня, в том числе применительно к проектированию ядерных реакторов.

Реалистические коды (высокоточные колы. содержащие не консервативных моделей) соответствуют играм, в которых природа не сознательным существом, умышленно препятствующим нам решению задачи оптимального проектирования реактора заранее критериями выбранными И ограничениями или залачи повышения безопасности. Такие коды можно бы было взять за основу, если бы человек (лицо, принимающее решения) в принципе не имел возможности ошибаться или заблуждаться при принятии решений. В итоге человек может сам себе противостоять как мыслящий противник. В этом случае реалистические коды вряд ли можно брать за основу для обоснования безопасности потенциально опасных объектов и технологий.

Консервативный и детерминистический подходы – игра с мыслящим противником. У нас и нашего противника разные интересы и он всячески препятствует достижению оптимального с нашей точки зрения решения. В случае нашей ошибки он со 100-процентной вероятностью воспользуется этим, т. е. ухудшит оптимальное для нас решение. Причем «противник» это не природа, сознательно противостоящая человеку, а сам человек, делающий ошибки уже на стадии разработки моделей процессов и проектирования объекта. По своей сути детерминизм не терпит неопределенностей, т.е. если они присутствуют, их необходимо корректно учитывать. Таким образом, детерминистическому подходу всегда присущ учет неопределенности исходной информации [4]. Результаты анализа удобно представлять в виде области, ограниченной кривыми или поверхностями, соответствующими пессимистичному и оптимистичному вариантам, причем таких вариантов несколько. Пессимистичные варианты соответствуют консервативным оценкам. Консервативный подход можно рассматривать как частный случай детерминистического. Определенную роль в «усугублении консервативности» могут сыграть так называемые «придуманные аварии» [5]. детерминистический подход есть феноменологический «придуманные аварии».

Вероятностный подход соответствует случаю, когда наш противник принимает правильные решения с определенной (не известной заранее) вероятностью. Таким образом, в пределе вероятностный подход должен приводить к оптимистическому и пессимистическому (консервативному) вариантам: границам области неопределенности, полученных с помощью вероятностного анализа или реализации феноменологического подхода.

Список литературы / References

1. Уолтер А., Рейнольдс А. Реакторы-размножители на быстрых нейтронах. – М.: Энергоатомиздат, 1986. – 623 с.

JARiTS. 2022. Issue 30

- 1. Waltar A.E., Reynolds A.B. Fast Breeder Reactors. New York, Oxford, Toronto, Sydney, Paris, Frankfurt: Pergamon Press; 1981. 853 p.
- 2. Accident Analysis for Nuclear Power Plant. Safety Reports Series No 23. Vienna: IAEA, 2002. 121 p.
- 3. Myerson R.B. Game Theory: Analysis of Conflict. Harvard University Press; 1997. 568 p.
- 4. Okunev V.S. An effective method for accounting for the uncertainty of scenarios for the development of emergency situations in nuclear reactors // IOP Conference Series: Earth and Environmental Science. 2022, vol. 979, p. 012106, doi:10.1088/1755-1315/979/1/012106.
- 5. Orlov V.V. et al. Deterministic Safety of BREST Reactors // Proc. 11-th Int. Conf. on Nucl. Engrg., ICONE-11. JSME/ASME, Shinjuku, Tokio, Japan, 2003.

Окунев Вячеслав Сергеевич – кандидат	Okunev Viacheslav Sergeevich – candidate of
технических наук, доцент кафедры физики	technical sciences, associate professor of the
	Department of physics
okunevvs@bmstu.ru	

Received 10.06.2022