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Abstract. When carrying out the design calculation of lawtar centrally compressed rods for
stability, the use of the coefficient of reductiohthe main allowable stress leads to the needé¢o u
the method of successive approximations, whichirega large number of calculations, which is its
significant disadvantage. Described in the artgraphic-analytical calculation method is deprived
of this drawback. To implement this method, itézessary to analytically obtain the dependences of
the reduction coefficient of the main allowableess on flexibility and graphically determine their
actual values as the coordinates of the intersegiint of the graph of the obtained dependence and
the graph constructed from reference values.

METO/J PACUETA MPSIMOJMHEMHBIX HEHTPAJIBHO C/XKXATBIX
CTEPKHEHW HA YCTOMYNBOCTH
Domun AM., Yaoynun U.C., IlImaznrox M.E.

KiioueBble cjI0Ba: CTEP)KEHb, yCTOMUNBOCTH, pacuéT, rpado-aHATHTUIECKUN METO.

AnHoTauus. [Ipu npoBeeHNN MPOSKTUPOBOYHOTO pacuEra NMPSIMOJIUHEWHBIX [IEHTPAIBHO CKATHIX
CTepKHEH Ha YCTOMYMBOCTBH MCIIONB30BaHUE KOA(D(HUIIMEHTA CHIDKEHHS OCHOBHOTO JOIYCKAaeMOTO
HampSDKCHHS  MPHUBOAWT K  HEOOXOOMMOCTH TPHMEHEHHS CIoco0a  IOCiieoBaTeIbHBIX
mpuOIMKEeHNH, TPeOYyIOmEeTo OOIBIIOro KOJNIECTBA BEIYHCICHHH, UTO SBISETCS €T0 3HAYHTEIBHBIM
HenoctaTkoM. OmKChIBacMbIil B paboTe rpado-aHAIUTUYCCKUH METOH pacyéra JIMMIEH TaHHOTO
HepocTaTka. J{Js peanu3anuy JaHHOTO METOJa HEOOXOMMO aHATMTHICCKH MOJTYYUTh 3aBUCUMOCTH
KOX((PUIUEHTAa CHIDKECHHUSI OCHOBHOTO JIOIMYCKACMOTO HANPSDKECHUS OT THOKOCTH U TPaduyuecKoro
ONpENCICHUST WX JCUCTBUTEIBHBIX BCIMYMH KaK KOODIMHAT TOYKH TMepeceucHus rpaduka
MOJTyYCHHOM 3aBUCUMOCTH U TpaduKa, HOCTPOCHHOTO MO CIIPAaBOYHBIM 3HAUCHHSIM.

As it is known from the classical material resisg@mcourse, the slenderness
criterion (hereinafter denoted Ry can be used to classify bars as those of large,
medium and small slenderness. When calculatingsthieility of the former, it is
justified to apply the Euler formula, with mediunmes the Yasinsky formula is
engaged, however, small slenderness bars do noheursk of losing stability as it
must be preceded by the loss of their bearing dgpdkhese formulae allow to
determine the value of normal stresg, corresponding to the critical force the
excess of which will result in the loss of stalyildf the original form of balance of
the homogeneous rectilinear centrally compressediib& graphical dependence of
critical stress on the slenderness of the baratufed in Figure 1. Her€urve | is
relevant for large slenderness bars, thus, it neatt¢he calculating correspondence

6, =n°E/A*, where L =Bl /i is the bar slendernesss=./J,,,/A is the minimum
inertia radius;J;, is the minimum axial moment of inertia of the @esgctiony is
the cross section aref,; is the length reduction factor determined by tlag wf the

bar fixation; andl is the bar lengthCurve Il limits the critical stress going to
infinity at the reduction of the bar slendernesd @ncorresponds to the limiting
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value of 5, (the yield point at compressias, . for plastic materials or the break-
down point for at compression, . for fragile ones)Curve Il is described using
the Yasinsky formulas, =a—b\+cA?, wherea, b, ¢ are the values determined by

the bar materialA, and %,,, mean the values slenderness matching the boundary

values/ thus, it is necessary to determine thedsleress of the bar first and then to

select the proper formula to calculate the stress.
O

1
2,0 Alim 2,
Fig. 1. Dependence between critical stresses ansldraderness

The essence of the method of calculation on thés ledsthe main allowed
stress is rather simple. It stems from the prertha¢ with small slenderness bars
the allowed compression stress eqL[a]§, however, the increase in slenderness it
has to be reduced by multiplying the reductiondact the main allowed stregs,
the latter being less than 1. Numerical value$ dthat may be calculated using the
correspondence :csk,DhC/(ny EisL),where ne is the load factorn, is the stability
factor), depending on slenderness may be found in the reference books for
different materials [1].

However, even using the pre-determined valueg pfay trigger significant
problems. Depending on the terms of a particulak,téhe calculation practice
employs checking or designing calculation metho#s. a rule, in checking
calculations the employment of tige value does not entail any difficulty. Knowing
the geometrical parameters of the bar and the tiondiof its fixation, it is possible
to calculate the minimum inertia radius, slendesnard the allowed stress on
stability. After that by comparing the stressesvacin cross-sections of the bar
with the compressing force (G =F/ A) with the allowed stress on stability, one
can obtain relevant conclusions.

The case of designing calculations is differentvagn determining the area
of the cross section, it is given that F/(¢A)<[c]., i.e. A=F/(¢[c].), however,
the value ofp is not given, so there are two unknown valuesna formula, thus
uncertainty occurs. To resolve the problem, it scessary to resort to the
successive approximation method [1], [2]. Settimg initial value ofdp, = 05..06,
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we can calculate the necessary cross section Qteehen, taking into account the
cross section type of the bar, we can calculateninenum inertia radius, and bar
slenderness),. Using the value ofi, allows to determine the value of the
respective coefficient of allowed stregs. If the difference betweeny; and ¢, is

deemed significant, it is necessary to repeat #ieutations using the value of
o, =(,+¢')/2 at the second step of the calculation. New vahfes\,, i,, A,
and, consequentlyp, are determined. In casg¢> and ¢, diverge significantly
again, the calculations are once again repeated ggi= (<|>2 + ¢’2)/2, etc.

Thus, the drawback of using the coefficient of thain allowed stress in
designing calculations consists in the need tortésdhe successive approximation
method that requires a considerable amount of lzion. The suggested graphic-
analytical method of calculation of rectilinear tally compressed bars for
stability is deprived of this drawback.

As has been mentioned before, the essence of #phigranalytical method
of calculating rectilinear centrally compressedsbfar stability consists in finding
the analytical functiorp(L) of the coefficienty and slenderness, the drawing of
the graph of this function on the basis of the galwf ¢ from A, taken from
references. In particular, Table 1 gives the retbpegarameters for steel with
6. =400MPa [3].

Tab. 1.Values ob depending on slendernéss
0 | 10| 20| 30| 40, 50 60 70 80 90 1palo
1,0000,9820,9490,9050,8540,7960,7210,6230,5320,4470,3690,306
120| 130| 140| 150| 160 | 170| 180| 190 | 200 | 210| 220
0,2600,2230,1950,1710,1520,1360,1230,1110,1010,0930,086

L= YIRS Y

In [4] it was shown how to use the graphic-analfticalculation method for
bars having a simple cross-section type (a circle square), which allows to
obtain rather a plain dependence between the eexg®n aread and the axial
inertia momentJ,_... For bars having a more complex cross section eviteis
impossible to use only one parameter to determeearea (diameter, length of
side, etc.) this method does not seem appropriafesa glance. However, this
method may be applied in these cases as well, s® ¢here is one-to-one
association between the parameters characterifiegdimensions of this cross
section. The example may be found in the rectanduda with the cross section
having dimensiondxh with a fixed end, centrally loaded by the forceplagul

whose value isF, as is shown in Figure 2. HeréA=bh; J_ =hb®/12;
i=./J_ /A=b/y12; A =PI /i =412l /b. If we takeh = 2b in this example, then
JA=+2b and A=+248I/J/A, hence, A=2433%/A>. On the other hand,
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A= F/(¢[c].). Comparing the last two statements, we conclugedhmula for the

minimum value of the cross section area of the barF 12/242%12[s], .

For the bar in questiofi =2 (rigidly fixed one end of the bar). If we take the
value of F =500«N, and| = In. Using the data from Table 1, we can build the
graph of¢(A) and the graph of dependencedof F 12/24p217[s]. . We obtain the
values of ¢ and A, as the coordinates of the point where these tvwapls
intersect. The respective constructs are featurdeigure 3. The value ok = 126
obtained in Figure 3 is further used in formulas 24821%/)\%. Taking into account

that with the chosen rectangular cross sedtien/A/2 , we obtainb = 5%nm.
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Fig. 2. Bar design O 20 40 60 80 100 120 140 160 180 200 A

scheme Fig. 3. Determining the coefficient of reducingoatied
stress for a rectangular cross section

Let us consider a rectangular bar having a crossoseshaped as a right
triangle with legsb and h. Here [3] J, =(JX+Jy)/2—\/((Jy—JX)/Z)2+J2 ,
where J,, J,, J,, are axial and centrifugal inertia moments relativeentral axis

x andy that are parallel to the legs. By way of examfde us takeh =2b. Then
3. =2-+13p*/36. Considering ~ that  A=bh/2=b?, and

i =3 JA=+/5-130/6, then X:BI/i=6BI/[\/5—\/EbJ,
)\:6[3I/1/A‘5—\/1_3). Hence A:36[32I2/((5—\/1_3)>\2). On the other hand,

A= F/(¢[c].). Comparing the last two statements, we can cordiuel formula for
the  minimum value of the square of the cross sectio
d=F x2(5—\/f’>)/3632|2[0]c . We build the graph illustrating the latter depemce
using the data from Table 1, as is shown in Figuréhe value ofA = 13bbtained
from Figure 4 is then inserted iA:BGBZIZ/((S—\/f%)AZ). Considering that in the

chosen rectangular cross sectlon VA, we obtain the value df= M.
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Fig. 4. Determining the coefficient of reducing #iwed stress for the bar with a

triangle cross section

The application of the calculation method describgdjustified by the
outcomes of the numerical solutions using the Massoftware. Figures 5 and 6
illustrate the corrugated bars having rectangulad driangle cross sections
respectively, loaded with the compressed forceQff #N. The scales on the right
reflect full shifts. For better visibility Figureg and 8 present the graphs of
longitudinal movements od along the original axes in the undeformed state of
unfixed bar ends obtained by conducting non-liresdculations using Nastran. A
significant growth in the bend begins with the \eabf force at approximately 500
kN, which proves the correctness of the outcomebetalculations obtained using
the graphic-analytical method.

Thus the suggested method of calculation can béedppot only to bars
having a simple cross section determined by onanpater (diameter, side length,
etc.), but for more complex cross sections. Thepant is the presence of one-to-
one association between parameters charactertzigdimensions.

W1

Fig. 5. Outcomes of calculations using the Nassaftware for a bar with a
rectangular cross section
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Fig. 6. Outcomes of calculations using the Nassa@ftware for a bar with a triangle
Cross section
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Fig. 7. Dependence between the moving of the fneleoé the bar with a rectangular
cross section and the compressing force
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Fig. 8. Dependence between the moving of the fngleoé the bar with a triangle
cross section and the compressing force
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