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Abstract. When carrying out the design calculation of rectilinear centrally compressed rods for 
stability, the use of the coefficient of reduction of the main allowable stress leads to the need to use 
the method of successive approximations, which requires a large number of calculations, which is its 
significant disadvantage. Described in the article graphic-analytical calculation method is deprived 
of this drawback. To implement this method, it is necessary to analytically obtain the dependences of 
the reduction coefficient of the main allowable stress on flexibility and graphically determine their 
actual values as the coordinates of the intersection point of the graph of the obtained dependence and 
the graph constructed from reference values. 
 

МЕТОД РАСЧЕТА ПРЯМОЛИНЕЙНЫХ ЦЕНТРАЛЬНО СЖАТЫХ 
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Аннотация. При проведении проектировочного расчёта прямолинейных центрально сжатых 
стержней на устойчивость использование коэффициента снижения основного допускаемого 
напряжения приводит к необходимости применения способа последовательных 
приближений, требующего большого количества вычислений, что является его значительным 
недостатком. Описываемый в работе графо-аналитический метод расчёта лишён данного 
недостатка. Для реализации данного метода необходимо аналитически получить зависимости 
коэффициента снижения основного допускаемого напряжения от гибкости и графического 
определения их действительных величин как координат точки пересечения графика 
полученной зависимости и графика, построенного по справочным значениям. 
 

As it is known from the classical material resistance course, the slenderness 
criterion (hereinafter denoted by λ) can be used to classify bars as those of large, 
medium and small slenderness. When calculating the stability of the former, it is 
justified to apply the Euler formula, with medium ones the Yasinsky formula is 
engaged, however, small slenderness bars do not run the risk of losing stability as it 
must be preceded by the loss of their bearing capacity. These formulae allow to 
determine the value of normal stress σkr, corresponding to the critical force the 
excess of which will result in the loss of stability of the original form of balance of 
the homogeneous rectilinear centrally compressed bar. The graphical dependence of 
critical stress on the slenderness of the bar is featured in Figure 1. Here Curve I is 
relevant for large slenderness bars, thus, it matches the calculating correspondence 

22 λπσ Ekr = , where ilβλ =  is the bar slenderness; AJi min=  is the minimum 

inertia radius; minJ  is the minimum axial moment of inertia of the cross section; А is 
the cross section area; β  is the length reduction factor determined by the way of the 
bar fixation; and l is the bar length. Curve II limits the critical stress going to 
infinity at the reduction of the bar slenderness and it corresponds to the limiting 
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value of Lσ  (the yield point at compression .C.Tσ  for plastic materials or the break-

down point for at compression .C.Bσ  for fragile ones). Curve III is described using 

the Yasinsky formula 2λλσ cbakr +−= , where a, b, c are the values determined by 

the bar material. 0λ  and limλ  mean the values slenderness matching the boundary 

values/ thus, it is necessary to determine the slenderness of the bar first and then to 
select the proper formula to calculate the stress.  

 
Fig. 1. Dependence between critical stresses and bar slenderness 

 
The essence of the method of calculation on the basis of the main allowed 

stress is rather simple. It stems from the premise that with small slenderness bars 
the allowed compression stress equals [ ]Cσ , however, the increase in slenderness it 
has to be reduced by multiplying the reduction factor of the main allowed stress ϕ , 
the latter being less than 1. Numerical values of ϕ  (that may be calculated using the 

correspondence ( )LC σσ ⋅⋅=ϕ ykr nn ,where Cn  is the load factor; уn  is the stability 

factor), depending on slenderness λ  may be found in the reference books for 
different materials [1]. 

However, even using the pre-determined values of φ may trigger significant 
problems. Depending on the terms of a particular task, the calculation practice 
employs checking or designing calculation methods. As a rule, in checking 
calculations the employment of the ϕ  value does not entail any difficulty. Knowing 
the geometrical parameters of the bar and the conditions of its fixation, it is possible 
to calculate the minimum inertia radius, slenderness and the allowed stress on 
stability. After that by comparing the stresses active in cross-sections of the bar 
with the compressing force F ( )AF=σ  with the allowed stress on stability, one 
can obtain relevant conclusions.  

The case of designing calculations is different as when determining the area 
of the cross section, it is given that ( ) [ ]cσσ ≤ϕ= AF , i.е. [ ]( )cσϕ≥ FA , however, 
the value of φ is not given, so there are two unknown values in one formula, thus 
uncertainty occurs. To resolve the problem, it is necessary to resort to the 
successive approximation method [1], [2]. Setting the initial value of 6,0...5,01 =ϕ , 
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we can calculate the necessary cross section area 1A . Then, taking into account the 

cross section type of the bar, we can calculate the minimum inertia radius 1i  and bar 

slenderness 1λ . Using the value of 1λ  allows to determine the value of the 

respective coefficient of allowed stress 1ϕ′ . If the difference between 1ϕ′  and 1ϕ  is 
deemed significant, it is necessary to repeat the calculations using the value of 

( ) 212 ϕ′+ϕ=ϕ  at the second step of the calculation. New values of 2A , 2i , 2λ  

and, consequently, 2ϕ′  are determined. In case 2ϕ′  and 2ϕ  diverge significantly 

again, the calculations are once again repeated using ( ) 2223 ϕ′+ϕ=ϕ , etc. 

Thus, the drawback of using the coefficient of the main allowed stress in 
designing calculations consists in the need to resort to the successive approximation 
method that requires a considerable amount of calculation. The suggested graphic-
analytical method of calculation of rectilinear centrally compressed bars for 
stability is deprived of this drawback.  

As has been mentioned before, the essence of the graphic-analytical method 
of calculating rectilinear centrally compressed bars for stability consists in finding 
the analytical function ( )λϕ  of the coefficient ϕ  and slenderness λ , the drawing of 
the graph of this function on the basis of the values of ϕ  from λ , taken from 
references. In particular, Table 1 gives the respective parameters for steel with 

400σ .C.T = МPa [3]. 
 

Tab. 1.Values of φ depending on slenderness λ 
λ  0 10 20 30 40 50 60 70 80 90 100 110 
ϕ  1,000 0,982 0,949 0,905 0,854 0,796 0,721 0,623 0,532 0,447 0,369 0,306 
λ  120 130 140 150 160 170 180 190 200 210 220  
ϕ  0,260 0,223 0,195 0,171 0,152 0,136 0,123 0,111 0,101 0,093 0,086  

 
In [4] it was shown how to use the graphic-analytical calculation method for 

bars having a simple cross-section type (a circle or a square), which allows to 
obtain rather a plain dependence between the cross-section area A and the axial 
inertia moment minJ . For bars having a more complex cross section where it is 

impossible to use only one parameter to determine the area (diameter, length of 
side, etc.) this method does not seem appropriate at first glance. However, this 
method may be applied in these cases as well, in case there is one-to-one 
association between the parameters characterizing the dimensions of this cross 
section. The example may be found in the rectangular bar with the cross section 
having dimensions b×h with a fixed end, centrally loaded by the force applied 
whose value is F, as is shown in Figure 2. Here bhA = ; 123

min hbJ = ; 

12min bAJi == ; blil β12βλ == . If we take bh 2=  in this example, then 

bA 2=  and Alβ=λ 24 , hence, 22224 λβ= lA . On the other hand, 
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[ ]( )cσϕ≥ FA . Comparing the last two statements, we conclude the formula for the 

minimum value of the cross section area of the bar: [ ]c222 σβ24λ lF=ϕ . 
For the bar in question 2β =  (rigidly fixed one end of the bar). If we take the 

value of 500=F кN, and 1=l m. Using the data from Table 1, we can build the 
graph of ( )λϕ  and the graph of dependence of [ ]c222 σβ24λ lF=ϕ . We obtain the 
values of ϕ  and λ , as the coordinates of the point where these two graphs 
intersect. The respective constructs are featured in Figure 3. The value of 126≈λ  
obtained in Figure 3 is further used in formula 222 λβ24 lA = . Taking into account 

that with the chosen rectangular cross section 2Ab = , we obtain 55=b mm. 

 
Fig. 2. Bar design 

scheme  
Fig. 3. Determining the coefficient of reducing allowed 

stress for a rectangular cross section 
 

Let us consider a rectangular bar having a cross section shaped as a right 

triangle with legs b and h. Here [3] ( ) ( )( ) 22
min 22 xyxyyx JJJJJJ +−−+= , 

where xJ , yJ , xyJ  are axial and centrifugal inertia moments relative to central axis 

x and y that are parallel to the legs. By way of example, let us take bh 2= . Then 

( ) 36132 4
min bJ −= . Considering that 22 bbhA == , and 

6135min bAJi −== , then 




 −== blil 135β6βλ , 

( )1356 −β=λ Al . Hence ( )( )222 13536 λ−β= lA . On the other hand, 

[ ]( )cσϕ≥ FA . Comparing the last two statements, we can conclude the formula for 
the minimum value of the square of the cross section: 

( ) [ ]c222 σβ36135λ lF −=ϕ . We build the graph illustrating the latter dependence 
using the data from Table 1, as is shown in Figure 4. The value of 131≈λ  obtained 

from Figure 4 is then inserted in ( )( )222 13536 λ−β= lA . Considering that in the 

chosen rectangular cross section Ab = , we obtain the value of 78=b mm. 
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Fig. 4. Determining the coefficient of reducing the allowed stress for the bar with a 

triangle cross section 
 

The application of the calculation method described is justified by the 
outcomes of the numerical solutions using the Nastran software. Figures 5 and 6 
illustrate the corrugated bars having rectangular and triangle cross sections 
respectively, loaded with the compressed force of 600 кN. The scales on the right 
reflect full shifts. For better visibility Figures 7 and 8 present the graphs of 
longitudinal movements of δ  along the original axes in the undeformed state of 
unfixed bar ends obtained by conducting non-linear calculations using Nastran. A 
significant growth in the bend begins with the value of force at approximately 500 
kN, which proves the correctness of the outcomes of the calculations obtained using 
the graphic-analytical method. 

Thus the suggested method of calculation can be applied not only to bars 
having a simple cross section determined by one parameter (diameter, side length, 
etc.), but for more complex cross sections. The key point is the presence of one-to-
one association between parameters characterizing their dimensions. 

 
Fig. 5. Outcomes of calculations using the Nastran software for a bar with a 

rectangular cross section 
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Fig. 6. Outcomes of calculations using the Nastran software for a bar with a triangle 

cross section 
 

 
Fig. 7. Dependence between the moving of the free end of the bar with a rectangular 

cross section and the compressing force 
 

 
Fig. 8. Dependence between the moving of the free end of the bar with a triangle 

cross section and the compressing force 
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