JARiTS. 2020. Issue 21

https://doi.org/10.26160/2474-5901-2020-21-45-48

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССА ДЕФОРМИРОВАНИЯ БАЛКИ ИЗ МЕРЗЛОГО ГРУНТА С ЭВОЛЮЦИОНИРУЮЩЕЙ ТРЕЩИНОЙ *Гаврилов Т.А.*

Ключевые слова: мерзлый грунт, деформирование, эволюционирующая трещина, трехточечный изгиб, моделирование.

Аннотация. Статья посвящена проблеме моделирования механического состояния мерзлых грунтов. Описана методика и результаты испытаний образцов мерзлого песчано-гравийного грунта на трехточечный изгиб. Разработана математическая модель полного процесса деформирования балки из мерзлого грунта с эволюционирующей трещиной при трехточечном изгибе.

MATHEMATICAL MODELING OF THE DEFORMATION PROCESS OF A BEAM FROM FROZEN SOIL WITH AN EVOLVING CRACK *Gavrilov T.A.*

Keywords: frozen ground, deformation, evolving crack, three-point bending, modeling.

Abstract. The article is devoted to the problem of modeling the mechanical state of frozen soils. The technique and results of testing samples of frozen sand and gravel soil for three-point bending are described. A mathematical model has been developed for the complete deformation process of a beam made of frozen soil with an evolving crack at three-point bending.

Современное понимание проблем моделирования механического состояния мерзлых грунтов отражено в работах [1-3], обзор которых показал, что в литературных источниках отсутствует решение задачи моделирования полного процесса деформирования балки из мерзлого грунта с эволюционирующей трещиной при трехточечном изгибе.

Цель работы: разработать математическую модель полного процесса деформирования балки из мерзлого грунта с эволюционирующей трещиной при трехточечном изгибе.

Методика исследования. Образцы были изготовлены из смеси песчаного грунта (с размером частиц не более 2 мм) и гравия (с размером частиц от 2 до 10 мм). Образцы имели форму балки прямоугольного поперечного сечения шириной 55 мм, высотой 39 мм, пролет балки 280 мм. Образцы устанавливали в испытательную машину SHIMADZU AGS-X по трехточечной схеме и испытывали на изгиб (рисунок 1). Нагружение образцов производилось со скорости 5 мм/мин.

После испытания и оттаивания образцов измеряли содержание в них влаги с помощью анализатора влажности SHIMADZU MOC-120H при температуре в сушильной камере анализатора 105 °C. Относительная влажность материала рассматриваемого далее образца равна 12,53 %, что соответствует абсолютной влажности 14,32 %.

Испытания показали, что в процессе разрушения при трехточечном изгибе формируется первичная трещина, длина и ширина которой возрастают

с увеличением нагрузки, что естественно. Кроме того, можно видеть признаки бифуркации первичной трещины и формирование вторичных трещин.

Рис. 1. Испытание образцов на трехточечный изгиб

По результатам испытаний получена диаграмма «нагрузка *F* – вертикальное перемещение точки приложения силы *F*».

Математическая обработка результатов испытаний. Пусть *B* и H_0 – соответственно, ширина и высота поперечного сечения балки, *f* – вертикальное перемещение точки приложения силы *F*, *h* – длина трещины. С увеличением длины трещины *h* уменьшается эффективная высота поперечного сечения $H = H_0 - h$. Соответственно, если *f* изменяется на некоторую величину Δf , то изменение эффективной высоты равно ΔH . При небольших изменениях зависимость ΔH от Δf можно записать в виде линейного соотношения с постоянным коэффициентом пропорциональности K_1 :

$$\Delta H = \frac{\Delta f}{H_0} K_1 H. \tag{1}$$

Разделим обе части равенства (1) на H_0 и перейдем к безразмерным параметрам θ и $\Delta \theta$:

$$\theta = \frac{H}{H_0}, \ \Delta \theta = \frac{\Delta H}{H_0}.$$
(2)

Параметр θ можно рассматривать как геометрическую характеристику эффективной площади. Значения θ изменяются от 0 до 1, причем 0 соответствует полностью поврежденному материалу, и 1 – материалу без повреждений (без трещин).

Равенство (1) при $\Delta \theta \rightarrow 0$ трансформируется к виду:

$$\frac{d\theta}{\theta} = \frac{df}{H_0} K_1. \tag{3}$$

Интегрируя обе части равенства (3), определим константу интегрирования из условия: если f = 0, то $H = H_0$, т. е. $\theta = 1$. Получим:

$$H = H_0 e^{\frac{f}{H_0} K_1}.$$
 (4)

JARiTS. 2020. Issue 21

Используя (4), определим *I* – эффективный момент инерции поперечного сечения с эволюционирующей трещиной и *W* – эффективный момент сопротивления того же сечения:

$$I = \frac{BH^3}{12},$$

$$W = \frac{BH^2}{6}.$$
(5)

Для рассматриваемого примера получим: $I = 2,719 \cdot 10^{-7} \exp(76,92 fK_1),$ $W = 0,1394 \cdot 10^{-4} \exp(51,28 fK_1).$

Эксперименты показали, что соотношение «нагрузка F – перемещение f» с достаточной точностью может быть представлено в виде:

$$F = \frac{48EIf}{L^3}.$$
(7)

Принимая во внимание равенства (4) и (5), заметим, что в соотношении (7) переменными величинами являются f, I, F. Чтобы получить в явном виде зависимости F(f) и $\sigma(f)$, где σ – растягивающее напряжение в сечении с трещиной, необходимо определить обозначенный выше коэффициент K_1 и модуль упругости E. Величины K_1 и E найдем, используя результаты испытаний. Полученная в испытаниях зависимость F(f) нелинейная, $F_{\text{extr}} = 769 \text{ H и } f_{\text{extr}} = 1,574 \text{ мм}.$

Принимая во внимание соотношение (7) и экспериментальное значение f_{extr} , найдем обозначенный выше коэффициент K_1 из условия:

$$\frac{dF}{df} = 0.$$
 (8)

Для рассматриваемого примера после преобразований получим: $\frac{dF}{df} = E(0,5944 \cdot 10^{-3} + 0,4573 \cdot 10^{-1} fK_1) \exp(76,92 fK_1), K_1 = -8,280.$

Затем, вновь принимая во внимание (7), а также используя вычисленный коэффициент K_1 и экспериментальные значения f_{extr} и F_{extr} , определим величину модуля упругости E из уравнения $F = F_{\text{extr}}$. Для рассматриваемого примера найдем после преобразований E = 2240 МПа.

Используя вычисленные значения K_1 , E и принимая во внимание соотношение (7), после преобразований найдем в явном виде зависимость F(f).

Полученной информации достаточно для определения наибольших растягивающих напряжений σ в сечении с трещиной. Используя изгибающий момент $M = \frac{FL}{4}$ и эффективный момент сопротивления (6), запишем:

$$\sigma = \frac{FL}{4W}.$$
(9)

После преобразований, с учетом (1), (4), (6) и (7), получим в явном виде зависимость $\sigma(f)$. В рассматриваемом примере $\sigma_{\text{extr}} = 11,58$ МПа, соответствующее перемещение $f_{\text{extr}_{-}\sigma} = 4,71$ мм.

Анализ результатов моделирования показывает достаточную адекватность модели на восходящей и на некотором участке нисходящей ветви диаграммы «нагрузка *F* – перемещение *f*». С увеличением перемещения *f* несоответствие возрастает, однако не является критическим. Поиск причин данного несоответствия может составить предмет дальнейших экспериментальных и теоретических исследований по теме работы.

Разработанная модель базируется на экспериментальных данных и соотношениях (1)-(8), описывающих полную картину силового воздействия на балку, и может быть отнесена к классу конститутивных моделей.

Разработанная модель является нелинейной, причем нелинейность объясняется эволюцией трещины и, соответственно, изменением эффективных геометрических характеристик (4), (5), (6) сечения с трещиной. Полученных данных достаточно для вывода о том, что на полной диаграмме прогиб f_{extr_F} , соответствующий экстремуму силы F_{extr} , меньше прогиба f_{extr_σ} , который соответствует экстремуму растягивающего напряжения σ_{extr} . С физической точки зрения это означает, что разрушение материала происходит на нисходящей ветви диаграммы F(f), т. е. когда сила $F < F_{\text{extr}}$, но $\sigma = \sigma_{\text{extr}}$. Вообще говоря, разрушение может произойти при $\sigma \leq \sigma_{\text{extr}}$ и соответствующем перемещении $f \leq f_{\text{extr}_\sigma}$.

Перспективы развития темы представленной работы относятся к уточнению геометрической характеристики эффективной площади для адаптации использованного подхода к инженерному анализу грунтов при воздействии циклов "промерзание – оттаивание".

Список литературы / References

- 1. Wang P., Liu E.L., Song B.T., Liu X.Y., Zhang G., Zhang D. Binary medium creep constitutive model for frozen soils based on homogenization theory // Cold Regions Science and Technology. 2019. № 162. P. 35-42.
- Teltayev B.B., Liu J., Suppes E.A. Distribution of temperature, moisture, stress and strain in the highway // Magazine of Civil Engineering. 2018. № 83 (7). P. 102-113.
- Gavrilov T.A., Kolesnikov G.N. Evolving crack influence on the strength of frozen sand soils // Magazine of Civil Engineering. – 2020. – № 94 (2). – P. 54-64.

Гаврилов Тиммо Александрович –	Gavrilov Timmo Alexandrovich - candidate
кандидат технических наук, доцент,	of technical sciences, associate professor,
Петрозаводский государственный	Petrozavodsk state university, Petrozavodsk,
университет, г. Петрозаводск, Россия,	Russia, gavrilovta@yandex.ru
gavrilovta@yandex.ru	