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Abstract. The spatial problem of the theory of elasticgysblved for a layer with several infinite
cylindrical cavities disjoint to each other and theface of the layer. Stress values are presehéor
cavities and for the upper boundary of the lay&pldcements are preset on the lower boundary of
the layer. The problem is solved using the gernerdliFourier method with respect to the system of
Lame’s equations. If the boundary conditions atesfad, we are led to infinite systems of linear
algebraic equations that are solved by the reductiethod. As a result, values of displacements and
stresses at various points of the elastic layemhtained. A computational investigation is carried
out for a concrete layer adhered to a rigid baskveeakened by two unloaded cavities. A normal
stress value is preset on the upper boundary dattez. The analysis of the stress-strain stathef
layer in the vicinity of the load application, aglivas in the vicinity of the left cavity locatetbser

to the load, is carried out. It is compared to tdpion when the second cavity is absent. The
proposed method can be used to calculate structumggparts with similar design models, and the
stress state analysis can be made to select tieegiéo characteristics of the designed structure.

ONPEAEJIEHUE HAIIPAKEHHOT'O COCTOSAHUS CJ105 HA
KECTKOM OCHOBAHUU, OCJABJEHHOI'O HECKOJIBKUMUA
NPOJOJBbHBIMU HUWJINMHAPUYECKUMHU TOJOCTAMHU
Mupownuxos B.1O., IIpoyenko B.C.

KiroueBble ci10Ba: IIMHAPUYECKUE TIOJOCTH B cjoe, ypaBHeHue Jlame, 00OOMIEHHBIA METOI
dypre, 0eCKOHEUHBIE CHCTEMBI IMHEHHBIX alreOpandeckux ypaBHEHUH.

AHHoTanus. Pemena mpocTpaHCTBeHHAs 3aAada TEOPUH YIPYTOCTH AJS CIOA C HECKOJIBKUMH
OCCKOHCYHBIMH ~ [WIMHAPUYCCKHUMH  TIOJNOCTSMH, HEMEPECEKAIOMMUMHUCT MeXIy coboil u
MOBEPXHOCTHIO cJiosl. Ha monocTsax v Ha BepxHeW rpaHuile ciosi 3aJaHbl HANPSOKEHUs, Ha HIDKHEH
TpaHUIIe CJIOS 3aJaHbl MEepeMeIllcHus. PelieHue 3alavyd MOJYy4YeHO IPU IOMOIIM O000OLICHHOTO
Merona Oypbe OTHOCUTENBHO CUCTEMBI yYpaBHeHUM Jlame. Y 1OBIETBOpEHUE IPAaHUYHBIM YCIOBUSIM
OPUBOIUT K OCCKOHCYHBIM CHCTEMaM JIMHCWHBIX alreOpanvyecKux YpaBHEHHMA, KOTOPBIC PEIICHBI
METOJIOM penyKUuHu. B pesynbrare mojiyueHsl NepeMelIeHUs] U HANpPSDKEHUS. B PA3JIMYHBIX TOUYKAX
yrnpyroro ciosi. YucaeHHOe HCCie0BaHUE MPOBEACHO JIsl CIIos OSTOHA, CUCIUICHHOTO C JKECTKUM
OCHOBAHHEM M OCHA0JEHHOTO OBYMS TOJIOCTSIMH, CBOOOAHBIMH OT Harpy3ku. Ha BepxHeil rpaHmie
CJIOS 3aJJaHO HOPMAJIFHOE HaIlpsDKeHue. [laH aHamn3 HANpPsSKEHHO - NeGOpPMHUPOBAHHOTO COCTOSHHUS
ciosi B ONM3WM TPUIIOKEHUS HATPy3KH, a TaKXKe B OKPECTHOCTH JIEBOH IIOJIOCTH, PACTIONOKEHHON
ommke K Harpyske. IIpoBemeHO cpaBHEHHE C BapHaHTOM, KOTZa BTOpas IOJIOCTh OTCYTCTBYET.
ITpennoskeHHBIN METO MOXKET MCIIOJIB30BAThCS IS pacueTa KOHCTPYKITHH U IETaIeH ¢ MOJ00HBIMHU
pacHeTHBIMH CXEMaMH, a aHaIW3 HANpsDKEHHOTO COCTOSIHHS U MOJ00pa T'eOMETPHUYECKHX
XapaKTEPUCTUK MPOEKTUPYEMOI KOHCTPYKIIMH.

1. Introduction

When designing various kinds of structures, macipags and mechanisms
design models in the form of a layer with circutytindrical cavities are wide-
spread. Therefore, a lot of articles are devotdtistopic.
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So in the articles [1-5], problems for a layer wathvities perpendicular to its
boundaries were considered. However, the methodsl @isr crosscut cavities
cannot be applied to the problems with longitudoslities.

The problem concerning heat shock for an infinieelyo with a cylindrical
cavity dealing with the fractional order generadizéheory, whose solution was
obtained applying the Laplace transform theorens stadied in the article [6].

The problems for a layer with one longitudinal ¢gvor inclusion were
considered in the article [7] where based on tHetism transformation in Fourier
series and the reflection method stationary problehshear waves diffraction
were solved.

In the article [8], on the basis of the method rohges, in two-dimensions,
numerical and analytical calculations of diffractiscattering of symmetric normal
waves of longitudinal shear for a layer with a egical cavity were made.

The articles [9, 10] were devoted to determining #tress state of a finite
cylinder and are based on the method of superpositf solutions and
transformation in Fourier and Dini series.

In the articles [11, 12], based on the finite elatnenethod in three-
dimensions, stresses and strain concentrationsusfdr and elliptical holes in the
plates of finite thickness under uniaxial tensilading were considered.

All the methods mentioned above do not allow tovedhe static problem
with several cylindrical cavities in the layer;ist proposed to solve such problems
applying the generalized Fourier method [13].

Based on this method, the problem for a layer wisgpherical cavity, which
is stretched by radial forces to infinities [14}oplems for a half-space with a
cylindrical cavity or inclusion [15, 16], a problefar a cylinder with cylindrical
inclusions [17] as well as a problem for a layethwelastic inclusion are solved
[18].

There are no precise and analytical and numerieahods for a layer with
several cavities in the spatial option, althougkytban be found in design models.
Therefore, the problem of solving such problemgeilevant. In this work, the
solution for the problem is obtained on the badismew theorems of addition of
vector solutions of the Lame’s equation [19].

2. Problem formulation

In an elastic homogeneous layer, thereNagylindrical cavities parallel to its
surfaces. Their radius Rp wherep is the cylinder numbep = 1, 2, ..., N Each
cavity will be considered in a local cylindricalssgm of coordinatesp(,, ¢ ,, z), the
boundaries of the layer will be considered in Caae coordinate system, (y, 2)
combined with the axis of the cylinder with numlggiFig. 1). The upper boundary

of the layer is at the distange= h, the lower one is at the distange—h .
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Fig. 1. Layer with cylindrical cavities

It is necessary to find a solution for the Lamedgiaion provided that the
following values are preset: stressei (x z) ., = F’(x z) on the upper boundary
of the layer; displacements(x z),.; =UZ(xz) on the lower boundary of the
layer, stresseEUp(q)p, z}pp:Rp = ﬁ§(¢p, z) on the surface of the cylinders, where
is the displacement vector;

FU:HE%
1_

9 Amivy +iU +1(ﬁ x rotU) is the stress vector:
) on 2

o - Poisson's ratiofi- unit normal vector to the surface of the layecgimder;G -
the shear modulus

Fr(x2)= Tyxel oy
U2(x2)=U g +u e
'E;?(q’p z):og)el() ()ez()”( )es()
known functions; e(") (G =1, 2, 3) - Cartesian unit vectols £ 1) and cylindrical

(k = 2) systems of coordinates.

We consider functions (1) to be rapidly decreasfrgn the origin of
coordinates along the-coordinate for the cylinders and along tReand z
coordinates for the layer boundaries.
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3. The solution method
We choose basic solutions for the Lame’s equataiimgy into account the
introduced systems of coordinates, in the form:[13]
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Ulf (X, y, Z, u) — ngd)ei()\zwx):ryy.

Ren(Ppr0:Z2)= NI, (Ap, Jo 7 @
SunlPrr 0, 20)= NP sigmA)K (W, )™ L = 123
N =005 NI = 2o~ 1))+ S 0(y i N = ror(el O

1 1 0 0
N(p):—D; NP == 0 +4O._1(D_a(2) j :
=L E NS = e (0-1) D-&7—

__rot( O] y—1/}\2+u , —0 <A U<oo,

where é].(r), (j = 12,3) - unit vectors of Cartesiam € 1) and cylindrical i( = 2)
systems of coordinates - Poisson's ratio;l(x), K, (x)- modified Bessel

function, R, S.,- respectively internal and external solutions fioe Lame’s

equation for cylinderfil”, G{*)- the Lame’s equation solutions for layer.
The solutions for the problem is presented asidlo
. N 3 9 o -
=22 f > B(kf)n)q()\)EBk,m(Pp@p,z;)\)d)\ +
p=1 k=1 —¢ MF—00

s o o 3)
[ J(H )@ (x v, zh )+ A ) B0 (% 20, ),
k=1 -0 -0

Sl

where S, p,¢,z;)\) uk (x Y, Z;A, u) and uk (x V,ZA, u) are basic solutions
determined by formulae (2) and the unknown funatiot, (A1), H, (A1) and

B{")(\) should be found taking into account the boundanyditions (1).

For transition from one coordinate system to ano{R&.1) on the base of
[20] transition formulae for the bassolutions are obtained.

— for transition from solutionék,m of the cylindrical coordinate system to the
layer solutionsﬁé‘) (wherey>0) andd{*) ( wherey<0)

S RIVE W= j*) Bd—k 13
S .(p.0,zA)= [E[+ mm—— jul( )220 +4u(1- o)af )D(4)
—ipiptyypdu
v

rue y= )\2+H2 , %(A,H):“T_y’ m= 0x1%2,... ;
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— for transition from the layer solution”é” and G,E') to the solutionsﬁm of
the cylindrical coordinate system

0 (x y.2) = '““W“DZ( ©,)" Ry, (k=1 3}

©)
08 (% y,2) = €% 03[ o, )" (i + v, 22) R, £y R, , + 4u(L-0)R,, )]

m=—o0

Whereﬁk,mza‘ (o) @™ B (pA)= épD;()\p)+iDn()\p)tﬁé¢)\—r;)+ézj;
, I Ao -1) o )
=& (40 -3)0;(Ap) +Ap, 17 (Ap)] +6;i In()\p)+Tpln()\p) +&,irpl ! (Ap);

Es,n(p'A)={épDn(7\p)%+é¢ [ﬂD;()\p)}; €, &, & — - unit vectors of the

cylindrical coordinate system;
— for transition from the solutions for cylindermberp to the solutions for

cylinder numben
SenlPpr, ZA)=_Z " o)™ k=1 2 3; (6)

500 o.)= (1R, )
S )

50)= k‘
553 ou)= (PR, )n?(p -2 RARR FT e

i(m-n)a
|]3 pq,
wherea ,, — angle betweexg, — axis and interval Izm(x) = (sign(x))m EKmQxl).
To meet the boundary conditions at the layer boﬂesl,avector@km in (3)

using the transfer equation (4), are rewrittenha Cartesian coordinate system
through the basic solutloru{ wherey = h and u,ﬁ ) wherey =— h.We equate the

resulting vector to the presthg(x, z) wherey =— h _and for the vector obtained at
y = h, we find the stresses, and equate theiﬁo(oc z). We represent in advance

vectorsljg(x Z) and Ifho(x Z) through double Fourier integrals.
The determinant of this system of 6 equations ®ksws
32[G° [y° [¢hX [ﬁyz +(3-40)eh® X + (1- 20)2]
)\4
where X = y(h+ ﬁ), G is the shear modulus. The expression in the sduaekets
of this determinant coincides with the known res{®1].
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From the obtained system of equations we find fonstH, (\,u) and I-|k()\,p)
through BP)(2).

To meet the boundary conditions for each cylinglethe right-hand side of
(3) applying the transfer equations (5) and (6)eisritten in the local cylindrical

coordinate system of cylinder p through basic swmhg ka, Skm For the resulting

vector, withp,=R,, we find the stresses and equate them to the t[ﬁ@@%,z

represented by the integral and the Fourier seAssa result, for each cylinder
number p we obtain three infinite systems of linllgebraic equations with respect

toB{?)(A) which also contaibi, (\, 1) and H, (A, ).
The determinant of such a system relativ@{t}(A) is as follows [20]:

wherem =0 |A,| = 81~ 0) (B (K (B) K, (B)
wherem=1A,|>4mK, . (B)K,(X)K..(3) . B=]Alp , A #0.

FunctionsH, (A\,u) and H, (A,u)found earlier throungE?nl(A) are excluded

from these equations.

As a result, we obtain fd cylinders a collection of 8 infinite systems of
linear algebraic equations of second kind for debteing unknown functions
BEA).

Using (7), for the obtained systems it was proved they are systems with a
completely continuous form [5]. Hilbert's alternagiand the definite solvability of
the problem of the theory of elasticity allow usctinclude that the complex of these
systems is uniquely solvable. Moreover, the redunainethod can be applied to these
systems and convergence of approximate solutiotietprecise one takes place.

Functions Bﬁpnl(h) found from an infinite system of equations make it

possible to find expressions fad, (A\,u) and H,(\,u). This will determine all
unknown variables.

4. Numerical investigation of state of stress

A simulation where a truck wheel runs over a plaitd two cylindrical holes
lying on a rigid base is carried out. For dimenksa quantities, we introduce the
coefficients of: distancél, load T=E-H12700, whereE is elastic modulus of the
plate. The cylindrical cavities, which we denat@ndp, are parallel to the layer
surfaces along the horizontal axis, their radiiRge= Rp= 7.5 /H (Fig. 2). The
distance between the centers of the cavitiegjs 25 /H. The upper and lower
boundaries of the layer are located at the distaned 5 /H from the center of the
cylinders. The wheel widtlh = 31.5 /H with extension of the load application
along thez axis in each direction bg= 0.2 /H. The wheel weighs 140: For
comparison, a variant without a cylindrical cavitys calculated. Poisson's ratio of
the layer iso = 016.
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At the upper boundary of the layer, the stress@s,:o are preset where

(h) - _
4zbi2+e, % :—b/2+C° A nof(x/HY + 252)7 where b/2<|dsbi2+e,
G(h) -2
?":—10[ﬁ(x/H)2 + 2,52) where |7<b/2, which is graphically shown in (Fig.
2), =1l =0.

At the lower boundary of the layer displacementse apreset
ub) =yl =ull=0, the surfaces of the cylinders are free of stress

Fig. 2. Stressj(y“)/T at the upper boundary of layer

The infinite system was truncated by the parammter10. The integrals are
calculated using the quadrature formulas of Ph{fon oscillating functions) and
Simpson (for functions without oscillations). Theegision of meeting the boundary
cor;ditions where valuas are indicated and the geometric parameters asepis
10°.

Figure 3 shows the stresses along thaexis where §,=1v2 at the upper
boundary of the layer (Figa3and on the surface of the cylinder (Fig).3
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Fig. 3. Normal stresses along thexis at¢,=1v2: a - at the upper boundary of the
layer;b - on the surface of the cavity 1-0,/T; 2 -0,/T; 3 -0, /T
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In Fig. 3, stressew,/ T (line 3) correspond to the presef/ T. Stressess, /

T (Fig. 3, line 1) receive maximum negative stresses wher® and are equal to
oy/ T =—1.25. The stresses, (Fig. 3, line 2), in addition to negative values

within the wheel, are positive at the maximum vaiyé T = 0.47.
On the surface of the cylindrical cavity along thaxis (Fig. ), the stresses
o,/ T are positive, at the maximum valgg/ T = 0.45 where = 0. Stresseg, /T

within the width of the wheel are positive, outsiiey are negative.
Stresses at the upper boundary of the layer almgdxis are shown in Fig. 4.
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'1.2 \\I/\l
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Fig. 4. Stresses at the upper boundary of the kalgeg thex-axis:
1-0,/T;2-0,/T;3-0,/T;4-1,,/T

For the preset,/ T (Fig. 4, line 2), the maximum stresses ayg T, which,
in addition to negative (within the cavity widthglso have positive values. The
maximum tangent stressag,/ T arise on the side which is free from the second
cylinder (whereH = — 4) and are equal g,/ T = 0.065.

Fig. 5 shows the stresses on the connection betadenlerq and the upper
boundary of the layer wheme= 0 (Fig. 5a), as well as on the connection betwee
the cylinders (Fig. 5b).

7.5 10.0 12.5 15.0 7.5 10.0 12.5 15.0 17.5
1 0.1 >
2 0 3\ ..................... */H
05 ~l ot //";—
~L_ /H -0.1 —] e
e So 1 1 --=
0 ------ vy - » '02 Pld 2
\ ~~~~~~ &onen, /3 4\”
‘“s: ...... '0.3 Ps < A\
05 T~ 1 04 A2
1 ! 3 -0.5
. > ;
\ -0.6
-1.5 -0.7
a b

Fig. 5. Normal stresses on the connectiansirom cylinder g to the upper boundary
of the layerp - from cylinderq to cylinderp; 1 -0, / T;2 -0,/ T;3-0, /T
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Figure %@ shows how stresses,/ T and g,/ T (lines 2 and 3, respectively)

change sign in the interval from the upper bounddrthe layery /H = 15) to the
surface of the cylindeg (y / H = 7.5). Consequently, the upper zone of the
connection is compressed and the lower one ischdt On the connection

between the cylinders (Fig. 5b), from the cylindeo the cylindep, stressew, / T

decrease, stresses/ T change sign, stresse/ T on the surfaces of the cylinders

are set to zero, but between the cylinders theywgro
Figure 6 shows how the stresses on the surfacgliofler g change, where
= 0, for a layer with two cavities and without dsgvp.

0 14 TV231V4 T 51U4 6TU4 7104 211 0.20 0 7174 123104 T5TU4 6TU4 7104 21

08
8:2 \ 0.15 /\\
0.2 /AR X 0.10
0.0 AR == / \ 1
o2 JHA /127N | 005
os [T/ N 000 [\ 5
:8:2 ~J /| 0.05 = ,,/ 2 \
1.0 -0.10

a b

Fig. 6 Normal stresses on the surface of cayiyy-o, / T; b-0, / T; 1 - layer with
two cavities; 2 - layer with one cavity

Maximum tensile stresses,/ T and 0,/ T (Fig. 6a and Fig. I respectively)
are located in the upper part of the cavity (whége= 11/ 2), the maximum
compressive stresses areqgt = 11/ 8. Presence of cavity (line 1) increases
stresseso, / T and 0,/ T on the surface of cylinder in the upper partdf, =m2)
which is opposite the cavity(¢, = 0) and in the lower partp( = 61t/ 4).

5. Conclusions

A method for solving the spatial mixed problem loé theory of elasticity for
a layer with several cylindrical cavities is propds The problem is reduced to an
infinite system of linear algebraic equations. Nuoa development suggests that
its solution can be found with any precision by thencation method, which is
confirmed by high precision of meeting the boundaogditions.

The proposed method of solution can be used whsigrdag structures and
infrastructure whose design model includes a lay#r cylindrical cavities and the
considered boundary conditions.

The presented graphic charts show a picture ofstress distribution in a
layer with two cylindrical cavities and a loadedpep boundary. The influence of
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presence of the second cavity on the stress sfateeolayer is analyzed. The
analysis presented in the work can be used ints@mbeaf geometric parameters of
structures to be designed.

It is possible to carry out further research irstirection for a layer with

cylindrical cavities which is situated on a two-daylastic base.
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