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DETERMINING THE STRESS STATE OF A LAYER ON A RIGID BASE 
WEAKENED BY SEVERAL LONGITUDINAL CYLINDRICAL CAVITI ES 

Miroshnikov V.Yu., Protsenko V.S. 
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Abstract. The spatial problem of the theory of elasticity is solved for a layer with several infinite 
cylindrical cavities disjoint to each other and the surface of the layer. Stress values are preset for the 
cavities and for the upper boundary of the layer; displacements are preset on the lower boundary of 
the layer. The problem is solved using the generalized Fourier method with respect to the system of 
Lame’s equations. If the boundary conditions are satisfied, we are led to infinite systems of linear 
algebraic equations that are solved by the reduction method. As a result, values of displacements and 
stresses at various points of the elastic layer are obtained. A computational investigation is carried 
out for a concrete layer adhered to a rigid base and weakened by two unloaded cavities. A normal 
stress value is preset on the upper boundary of the layer. The analysis of the stress-strain state of the 
layer in the vicinity of the load application, as well as in the vicinity of the left cavity located closer 
to the load, is carried out. It is compared to the option when the second cavity is absent. The 
proposed method can be used to calculate structures and parts with similar design models, and the 
stress state analysis can be made to select the geometric characteristics of the designed structure. 
 

ОПРЕДЕЛЕНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ СЛОЯ НА 
ЖЕСТКОМ ОСНОВАНИИ, ОСЛАБЛЕННОГО НЕСКОЛЬКИМИ 

ПРОДОЛЬНЫМИ ЦИЛИНДРИЧЕСКИМИ ПОЛОСТЯМИ 
Мирошников В.Ю., Проценко В.С. 

 
Ключевые слова: цилиндрические полости в слое, уравнение Ламе, обобщенный метод 
Фурье, бесконечные системы линейных алгебраических уравнений. 
Аннотация. Решена пространственная задача теории упругости для слоя с несколькими 
бесконечными цилиндрическими полостями, непересекающимися между собой и 
поверхностью слоя. На полостях и на верхней границе слоя заданы напряжения, на нижней 
границе слоя заданы перемещения. Решение задачи получено при помощи обобщенного 
метода Фурье относительно системы уравнений Ламе. Удовлетворение граничным условиям 
приводит к бесконечным системам линейных алгебраических уравнений, которые решены 
методом редукции. В результате получены перемещения и напряжения в различных точках 
упругого слоя. Численное исследование проведено для слоя бетона, сцепленного с жестким 
основанием и ослабленного двумя полостями, свободными от нагрузки. На верхней границе 
слоя задано нормальное напряжение. Дан анализ напряженно - деформированного состояния 
слоя в близи приложения нагрузки, а также в окрестности левой полости, расположенной 
ближе к нагрузке. Проведено сравнение с вариантом, когда вторая полость отсутствует. 
Предложенный метод может использоваться для расчета конструкций и деталей с подобными 
расчетными схемами, а анализ напряженного состояния для подбора геометрических 
характеристик проектируемой конструкции. 
 

1. Introduction 
When designing various kinds of structures, machine parts and mechanisms 

design models in the form of a layer with circular cylindrical cavities are wide-
spread. Therefore, a lot of articles are devoted to this topic. 
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So in the articles [1-5], problems for a layer with cavities perpendicular to its 
boundaries were considered. However, the methods used for crosscut cavities 
cannot be applied to the problems with longitudinal cavities. 

The problem concerning heat shock for an infinite body with a cylindrical 
cavity dealing with the fractional order generalized theory, whose solution was 
obtained applying the Laplace transform theorem, was studied in the article [6]. 

The problems for a layer with one longitudinal cavity or inclusion were 
considered in the article [7] where based on the solution transformation in Fourier 
series and the reflection method stationary problems of shear waves diffraction 
were solved. 

In the article [8], on the basis of the method of images, in two-dimensions, 
numerical and analytical calculations of diffraction scattering of symmetric normal 
waves of longitudinal shear for a layer with a cylindrical cavity were made. 

The articles [9, 10] were devoted to determining the stress state of a finite 
cylinder and are based on the method of superposition of solutions and 
transformation in Fourier and Dini series. 

In the articles [11, 12], based on the finite element method in three-
dimensions, stresses and strain concentrations of round and elliptical holes in the 
plates of finite thickness under uniaxial tensile loading were considered. 

All the methods mentioned above do not allow to solve the static problem 
with several cylindrical cavities in the layer; it is proposed to solve such problems 
applying the generalized Fourier method [13]. 

Based on this method, the problem for a layer with a spherical cavity, which 
is stretched by radial forces to infinities [14], problems for a half-space with a 
cylindrical cavity or inclusion [15, 16], a problem for a cylinder with cylindrical 
inclusions [17] as well as a problem for a layer with elastic inclusion are solved 
[18]. 

There are no precise and analytical and numerical methods for a layer with 
several cavities in the spatial option, although they can be found in design models. 
Therefore, the problem of solving such problems is relevant. In this work, the 
solution for the problem is obtained on the basis of new theorems of addition of 
vector solutions of the Lame’s equation [19]. 
 

2. Problem formulation 
In an elastic homogeneous layer, there are N cylindrical cavities parallel to its 

surfaces. Their radius is Rp, where p is the cylinder number, p = 1, 2, ..., N. Each 
cavity will be considered in a local cylindrical system of coordinates ( zpp ,,ϕρ ), the 

boundaries of the layer will be considered in Cartesian coordinate system (x, y, z) 
combined with the axis of the cylinder with number q (Fig. 1). The upper boundary 

of the layer is at the distance y = h, the lower one is at the distance y= h
~− . 
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Fig. 1. Layer with cylindrical cavities 

 
It is necessary to find a solution for the Lame’s equation provided that the 

following values are preset: stresses ( ) ( )zxFzxUF hhy ,, 0
rr

==  on the upper boundary 

of the layer; displacements ( ) ( )zxUzxU
hhy ,, 0
~~

rr
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layer, stresses ( ) ( )zFzUF ppRpp
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known functions; ( )k
je
r

, (j = 1, 2, 3) - Cartesian unit vectors (k = 1) and cylindrical 

(k = 2) systems of coordinates. 
We consider functions (1) to be rapidly decreasing from the origin of 

coordinates along the z-coordinate for the cylinders and along the x and z-
coordinates for the layer boundaries. 
 

3. The solution method 
We choose basic solutions for the Lame’s equation taking into account the 

introduced systems of coordinates, in the form [13]: 
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 - unit vectors of Cartesian (r = 1) and cylindrical (r = 2) 

systems of coordinate. σ  - Poisson's ratio; ( )xI m , ( )xKm - modified Bessel 

function, mkmk SR ,, ,
rr

- respectively internal and external solutions for the Lame’s 

equation for cylinder; ( ) ( )+−
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where ( )λϕρ ;,,, zS mk
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, ( )( )µλ+ ,;,, zyxuk
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 and ( )( )µλ− ,;,, zyxuk
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 are basic solutions 

determined by formulae (2) and the unknown functions ( )µλ,kH , ( )µλ,
~

kH  and 
( ) ( )λp

mkB ,  should be found taking into account the boundary conditions (1). 

For transition from one coordinate system to another (Fig.1) on the base of 
[20] transition formulae for the basic solutions are obtained. 
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где 22 µ+λ=γ , ( )
λ

γµ=µλω m
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– for transition from the layer solutions ( )+
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 to the solutions mkR ,
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 of 
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– for transition from the solutions for cylinder number p to the solutions for 
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where pqα  – angle between xp – axis and interval qpl , ( ) ( )( ) ( )xKxsignxK m
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To meet the boundary conditions at the layer boundaries, vectors mkS ,

r

 in (3) 

using the transfer equation (4), are rewritten in the Cartesian coordinate system 

through the basic solutions ( )−
ku
r

 where y = h and ( )+
ku
r

 where y = h
~− . We equate the 

resulting vector to the preset ( )zxU
h
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y = h, we find the stresses, and equate them to( )zxFh ,0
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 through double Fourier integrals. 

The determinant of this system of 6 equations is as follows 
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~+γ= , G is the shear modulus. The expression in the square brackets 
of this determinant coincides with the known results [21]. 
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From the obtained system of equations we find functions ( )µλ,kH and ( )µλ,
~

kH  

through ( ) ( )λp
mkB , . 

To meet the boundary conditions for each cylinder p, the right-hand side of 
(3) applying the transfer equations (5) and (6), is rewritten in the local cylindrical 

coordinate system of cylinder p through basic solutions mkmk SR ,, ,
rr

. For the resulting 

vector, with ρp=Rp, we find the stresses and equate them to the preset ( )zF pp ,0 ϕ
r

 

represented by the integral and the Fourier series. As a result, for each cylinder 
number p we obtain three infinite systems of linear algebraic equations with respect 

to ( ) ( )λp
mkB ,  which also contain ( )µλ,kH  and ( )µλ,

~
kH . 

The determinant of such a system relative to ( ) ( )λp
mkB ,  is as follows [20]: 
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Functions ( )µλ,kH  and ( )µλ,
~

kH found earlier through ( ) ( )λp
mkB ,  are excluded 

from these equations. 
As a result, we obtain for N cylinders a collection of 3N infinite systems of 

linear algebraic equations of second kind for determining unknown functions 
( ) ( )λp

mkB , . 

Using (7), for the obtained systems it was proved that they are systems with a 
completely continuous form [5]. Hilbert’s alternative and the definite solvability of 
the problem of the theory of elasticity allow us to conclude that the complex of these 
systems is uniquely solvable. Moreover, the reduction method can be applied to these 
systems and convergence of approximate solutions to the precise one takes place. 

Functions ( ) ( )λp
mkB ,  found from an infinite system of equations make it 

possible to find expressions for ( )µλ,kH  and ( )µλ,
~

kH . This will determine all 

unknown variables. 
 

4. Numerical investigation of state of stress  
A simulation where a truck wheel runs over a plate with two cylindrical holes 

lying on a rigid base is carried out. For dimensionless quantities, we introduce the 
coefficients of: distance H, load T=E·H/12700, where E is elastic modulus of the 
plate. The cylindrical cavities, which we denote q and p, are parallel to the layer 
surfaces along the horizontal axis, their radii are Rq = Rp = 7.5 / H (Fig. 2). The 
distance between the centers of the cavities is ℓqp = 25 / H. The upper and lower 
boundaries of the layer are located at the distance h = 15 / H from the center of the 
cylinders. The wheel width b = 31.5 / H with extension of the load application 
along the z axis in each direction by c = 0.2 / H. The wheel weighs 140·T. For 
comparison, a variant without a cylindrical cavity p is calculated. Poisson's ratio of 
the layer is 16.0=σ . 
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At the upper boundary of the layer, the stresses ( ) 0=σ h
y  are preset where 
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Fig. 2. Stress ( ) Th

y /σ  at the upper boundary of layer 
 

The infinite system was truncated by the parameter m = 10. The integrals are 
calculated using the quadrature formulas of Philon (for oscillating functions) and 
Simpson (for functions without oscillations). The precision of meeting the boundary 
conditions where values m are indicated and the geometric parameters are preset, is 
10-3. 

Figure 3 shows the stresses along the z–axis where qϕ =π/2 at the upper 

boundary of the layer (Fig. 3a) and on the surface of the cylinder (Fig. 3b). 
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a      b 

Fig. 3. Normal stresses along the z-axis at qϕ =π/2: a - at the upper boundary of the 

layer; b - on the surface of the cavity q; 1- ϕσ /T; 2 – zσ /T; 3 – ρσ /T 
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In Fig. 3a, stresses ρσ / T (line 3) correspond to the preset yσ / T. Stresses ϕσ / 

T (Fig. 3a, line 1) receive maximum negative stresses where z = 0 and are equal to 

ϕσ / T = – 1.25. The stresses zσ  (Fig. 3a, line 2), in addition to negative values 

within the wheel, are positive at the maximum value zσ / T = 0.47. 
On the surface of the cylindrical cavity along the z-axis (Fig. 3b), the stresses 

ϕσ / T are positive, at the maximum value ϕσ / T = 0.45 where z = 0. Stresses zσ /T 

within the width of the wheel are positive, outside they are negative. 
Stresses at the upper boundary of the layer along the x-axis are shown in Fig. 4. 
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Fig. 4. Stresses at the upper boundary of the layer along the x-axis: 

1 - xσ  / T; 2 - yσ / T; 3 - zσ / T; 4 - xyτ / T 
 

For the preset yσ / T (Fig. 4, line 2), the maximum stresses are xσ / T, which, 

in addition to negative (within the cavity width), also have positive values. The 
maximum tangent stresses xyτ / T arise on the side which is free from the second 

cylinder (where x/H = – 4) and are equal to xyτ / T = 0.065. 

Fig. 5 shows the stresses on the connection between cylinder q and the upper 
boundary of the layer where z = 0 (Fig. 5a), as well as on the connection between 
the cylinders (Fig. 5b). 
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Fig. 5. Normal stresses on the connections: a - from cylinder q to the upper boundary 
of the layer; b - from cylinder q to cylinder p; 1 - ρσ  / T; 2 - ϕσ / T; 3 - zσ  / T 
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Figure 5a shows how stresses ϕσ / T and zσ / T (lines 2 and 3, respectively) 

change sign in the interval from the upper boundary of the layer (y / H = 15) to the 
surface of the cylinder q (y / H = 7.5). Consequently, the upper zone of the 
connection is compressed and the lower one is stretched. On the connection 
between the cylinders (Fig. 5b), from the cylinder q to the cylinder p, stresses ϕσ / T 

decrease, stresses zσ / T change sign, stresses ρσ / T on the surfaces of the cylinders 

are set to zero, but between the cylinders they grow. 
Figure 6 shows how the stresses on the surface of cylinder q change, where z 

= 0, for a layer with two cavities and without cavity p. 
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Fig. 6 Normal stresses on the surface of cavity q: a - ϕσ  / T; b - zσ  / T; 1 - layer with 

two cavities; 2 - layer with one cavity 
 

Maximum tensile stresses ϕσ / T and zσ / T (Fig. 6a and Fig. 6b, respectively) 

are located in the upper part of the cavity (where qϕ  = π / 2), the maximum 

compressive stresses are at qϕ  = π / 8. Presence of cavity p (line 1) increases 

stresses ϕσ / T and zσ / T on the surface of cylinder q in the upper part (qϕ  =π/2) 

which is opposite the cavity p ( qϕ  = 0) and in the lower part (qϕ  = 6π / 4). 
 

5. Conclusions 
A method for solving the spatial mixed problem of the theory of elasticity for 

a layer with several cylindrical cavities is proposed. The problem is reduced to an 
infinite system of linear algebraic equations. Numerical development suggests that 
its solution can be found with any precision by the truncation method, which is 
confirmed by high precision of meeting the boundary conditions.  

The proposed method of solution can be used when designing structures and 
infrastructure whose design model includes a layer with cylindrical cavities and the 
considered boundary conditions. 

The presented graphic charts show a picture of the stress distribution in a 
layer with two cylindrical cavities and a loaded upper boundary. The influence of 
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presence of the second cavity on the stress state of the layer is analyzed. The 
analysis presented in the work can be used in selection of geometric parameters of 
structures to be designed. 

It is possible to carry out further research in this direction for a layer with 
cylindrical cavities which is situated on a two-layer elastic base. 
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