https://doi.org/10.26160/2572-4347-2020-10-33-39

ИССЛЕДОВАНИЕ АВТОКОЛЕБАНИЙ МЕТОДОМ ГАРМОНИЧЕСКОЙ ЛИНЕАРИЗАЦИИ В MATHWORKS MATLAB & SIMULINK

Жукова А.Б., Тедеев Г.И., Масленников А.Л.

Ключевые слова: нелинейные системы, линеаризация, гармоническая линеаризация, автоколебания, MATLAB, Simulink.

Аннотация. Одним из наиболее эффективных методов исследования автоколебаний в нелинейных скалярных системах произвольного порядка считается метод гармонической линеаризации. В статье описывается разработанная программа в среде научных вычислений MathWorks MATLAB & Simulink для анализа автоколебаний при различных типах нелинейностей с использованием метода гармонической линеаризации. Результатом работы программы являются графики выходных сигналов нелинейной и линеаризованной системы, а также параметры автоколебаний – амплитуда и частота.

SELF-OSCILLATIONS ANALYSIS UTILIZING HARMONIC LINEARIZATION IN MATHWORKS MATLAB & SIMULINK Zhukova A.B., Tedeev G.I., Maslennikov A.L.

Keywords: nonlinear systems, linearization, harmonic linearization, self-oscillations, MATLAB, Simulink.

Abstract. One of the most numerically effective methods for self-oscillations analysis is the harmonic linearization, that could be applied to the scalar system with an arbitrary order. In this paper the designed in MathWorks MATLAB & Simulink software for self-oscillations analysis utilizing harmonic linearization method is described. The results of the software execution are the plots of the nonlinear and linearized systems output as well as self-oscillations parameters, such as amplitude and frequency.

Введение

В нелинейных системах могут присутствовать автоколебания – незатухающие колебания, возникающие без внешнего воздействия и поддерживаемые внутренним источником энергии самой системы. Амплитуда и частота этих колебаний, которые как правило и требуется определить, зависят от свойств или параметров системы, а не от начальных условий. Для исследования автоколебаний, в том числе и для определения амплитуды и частоты, существуют различные методы, например метод фазовой плоскости, метод точечного преобразования, метод гармонического баланса, метод гармонической линеаризации и др. [1-4].

Для определения параметров автоколебаний – амплитуды и фазы – одним из наиболее эффективных можно считать метод гармонической линеаризации, который может быть применен для скалярных систем произвольного порядка [5-6]. В данной статье рассматривается применение и вычислительная реализация метода гармонической линеаризации в среде научных вычислений Mathworks MATLAB & Simulink для исследования автоколебаний и определения их параметров.

Метод гармонической линеаризации

Метод гармонической линеаризации заключается в том, что в исследуемой нелинейной системе, структурная схема которой представлена на рис. 1, нелинейная часть (НЧ) заменяется на линеаризованную, которая имеет следующий вид:

$$H(A,s) = q(A) + \frac{q'(A)}{\omega}s, \qquad (1)$$

где q(A) и q'(A) – коэффициенты гармонической линеаризации, которые определяются в общем виде следующим образом:

$$q(A) = \frac{1}{\pi A} \int_{0}^{2\pi} f(A\sin(\omega t))\sin(\omega t) d(\omega t)$$
$$q'(A) = \frac{1}{\pi A} \int_{0}^{2\pi} f(A\sin(\omega t))\cos(\omega t) d(\omega t)$$

Параметры q(A) и q'(A) подбираются так, чтобы динамика H(s) была наиболее близка к динамике первой – основной гармоники колебаний в исходной нелинейной системе. Отметим, типовых что для видов нелинейностей получены аналитические выражения для q(A) и q'(A), нелинейностей. зависящие ОТ параметров этих Основные типы нелинейностей, использованные при реализации программы, а также их параметры приведены в табл. 1.

Рис. 1. Структурная схема типовой нелинейной системы

В результате параметры автоколебаний определяются по параметрам колебаний линеаризованной системы. Стоит отметить, что это осуществимо при предположении, что линейная часть (ЛЧ) обладает сильным фильтрующим свойством и пропускает только основную гармонику.

Табл. 1. Используемые в программе нелинейные функции

Схема моделирования в Simulink

Для численного анализа автоколебаний была разработана схема моделирования в Simulink, которая представлена на рис. 2, где одновременно присутствует и исходная нелинейная система (см. рис. 1) и линеаризованная система. Схема моделирования состоит из элементов усиления (для формирования отрицательных обратных связей), элементов для вывода данных в MathWorks MATLAB, элементов отображения результатов вычисления параметров автоколебаний, и следующих блоков – подсистем:

– блок НЧ – нелинейная часть;

- блок ЛЧ - линейная часть;

– блок с линеаризованной НЧ;

– блок определения параметров колебаний.

Блок НЧ реализует моделирование нелинейной части системы, в качестве которой выступает типовая нелинейность, выбранная в пользовательском интерфейсе. Схема моделирования данного блока представлена на рис. 3.

Блок ЛЧ реализует моделирование линейной части системы и состоит из последовательного соединения интегратора, использующегося для задания начальных условий для задания системе начальной энергии, и передаточной функции. Коэффициенты полиномов числителя и знаменателя передаточной функции, а также начальные условия интегратора задаются в пользовательском приложении.

Рис. 3. Схема моделирования блока НЧ

Блок определения параметров колебаний, схема моделирования которого представлена на рис. 4, реализует вычисление амплитуды и частоты колебаний. Решение этой задачи происходит по последним N точкам входного сигнала (выхода исходной нелинейной системы) в каждой момент времени, что реализуется за счет блока «Буфер». Отметим, что блоком «Буфер», по сути, реализуется очередь вида «первый пришел – последний вышел» из N точек сигнала и, если с начала моделирования в сигнале еще нет N точек, то выходной сигнал буфера дополняется нужным количеством нулей. Затем на каждом шаге для сигнала из N точек вычисляется односторонний амплитудный спектр, а после определяется частота и амплитуда колебаний. Наличие других технических блоков необходимо для корректной работы приложения.

Рис. 5. Схема моделирования блока линеаризованной нелинейной части

Блок линеаризованной HY реализует вычисление коэффициентов гармонической линеаризации и моделирование линеаризованной нелинейности. Схема моделирования данного блока представлена на рис. 5. Вычисление коэффициентов гармонической линеаризации осуществляется за счет рассчитанных предварительно аналитических выражений для q(A) и q'(A) для каждого типа нелинейности из табл. 1. Отметим, что ввиду ограничений MathWorks MATLAB дифференциатор из уравнения (1) заменяется на блок численного дифференцирования.

Пользовательское приложение

Внешний вид пользовательского приложения представлен на рис. 6,а. Основное окно приложения позволяет задать следующие параметры:

- «Т» - время моделирования.

- «N» - размер памяти буфера.

- «Н.У.» - начальные условия интегратора в линейной части.

- «h» - шаг моделирования.

– «Полином числителя» – коэффициенты полинома числителя передаточной функции линейной части, заданные как вектор значений, в соответствии с синтаксисом MATLAB.

– «Полином знаменателя» – аналогично предыдущему, но для знаменателя.

- «Тип нелинейности» - исследуемый тип нелинейности.

– «с», «b», «a», «k» – соответствующие выбранной нелинейности параметры. Если нелинейность не описывается одним или несколькими параметрами, то их значения в процессе моделирования игнорируются.

При нажатии на кнопку «Запустить расчет» происходит открытие схемы моделирования в Simulink, описанной ранее, ее моделирование, после которого данные выходных сигналов передаются в пользовательское приложение, где происходит построение соответствующих графиков.

В качестве демонстрации работы приложения возьмем линейную часть в виде модели колебательного звена с параметрами ξ=0.5 и ω=5 рад/с, математическая модель которого имеет следующий вид:

$$W(s) = \frac{\omega^2}{s^2 + 2\xi\omega s + \omega^2} = \frac{25}{s^2 + 5s + 25},$$

нелинейность типа реле, с параметром c=1, параметрами моделирования T=6c, h=0,001c, N=5000, начальными условиями для интегратора равными 0.001. В результате получим графики, представленные на рис. 6,6.

Рис. 6. Внешний вид приложения и результатов его работы

На первом графике отчетливо видны характерная форма сигнала выхода нелинейности типа реле и выход линеаризованной нелинейной части с явно выраженной основной гармоникой. На втором графике заметен процесс (в виду постепенного накопления буфером необходимого объема данных) стремления выхода линеаризованной нелинейной системы к установившемуся колебательному процессу, параметры которого – амплитуда и частота весьма близки к параметрам автоколебаний исходной нелинейной системы.

Список литературы

- 1. Ким Д.П. Теория автоматического управления. Т.2. Многомерные, нелинейные, оптимальные и адаптивные системы. М.: Физматлит, 2016, 440 с.
- 2. Попов Е.П. Теория нелинейных систем автоматического регулирования и управления. М.: Наука, 1988, 256 с.
- 3. Леванова Т.А. и др. Качественные и численные методы исследования динамических систем на плоскости: Учебно-методическое пособие. Новосибирск.: Изд-во НГУ, 2015, 61 с.
- 4. Khalil H.K., Nonlinear systems. Prentice hall, 2002. 750 p.
- 5. Шапкарин А.В., Просандеев А.В., Кулло И.Г. Анализ нелинейных систем автоматического управления методом гармонического баланса в среде МАТLAВ // Прикаспийский журнал: управление и высокие технологии. 2013. №1. С. 77-85.
- 6. Мелешкин К.Н., Галкин Д.Н., Саблина Г. В. Исследование автоколебаний в системе «перевёрнутый маятник» с учётом не идеальностей исполнительного механизма // Автоматика и программная инженерия. 2017. №2. С. 16-24.

References

- 1. Kim D.P. Automatic control theory. vol. 2. Multidimensional, nonlinear, optimal and adaptive systems. M.: Fizmatlit Publ., 2016. 440 p.
- 2. Popov E.P. Theory of nonlinear automatic control systems. M.: Science, 1988. 256 p.
- 3. Levanova T.A., Komarov M.A., Kryukov A.K., Kostin V.A., Osipov G.V. Qualitative and numerical methods of studying dynamical systems on the plane: Educational and methodological guide. Novosibirsk: NGU Publ., 2015. 61 p.
- 4. Khalil H.K. Nonlinear systems. Prentice hall, 2002. 750 p.
- 5. Shapkarin A.V., Prosandeev A.V., Kullo I.G. Analysis of nonlinear automatic control systems by the harmonic balance method in MATLAB // Prikaspiyskiy journal: controls and modern technologies. 2013. №1. P. 77-85.
- 6. Meleshkin K.N., Galkin D.N., Sablina G.V. Study of self-oscillation in the inverted pendulum with consideration of non-ideal actuation mechanism // Automatics & Software Enginery. 2017. №2. P. 16-24.

Жукова Анастасия Борисовна – студентка	Zhukova Anastasiya Borisovna – student
Тедеев Георгий Игоревич – студент	Tedeev Georgiy Igorevich - student
Масленников Андрей Леонидович –	Maslennikov Andrey Leonidovich - senior
старший преподаватель кафедры «Системы	lecturer, Automatic Control Systems Dept.,
автоматического управления»,	amas@bmstu.ru
amas@bmstu.ru	
Московский государственный технический	Bauman Moscow State Technical University,
университет имени Н.Э. Баумана, г. Москва,	Moscow, Russia
Россия	

Received 25.05.2020