https://doi.org/10.26160/2542-0127-2024-13-75-78

ВЛИЯНИЕ РЕЖИМА РЕЗАНИЯ НА ТЕМПЕРАТУРНОЕ ПОЛЕ ПРОЦЕССА ОБРАБОТКИ ФРЕЗАМИ С РАЗЛИЧНЫМ ШАГОМ ЗУБЬЕВ

Унянин А.Н., Чуднов А.В.

Ульяновский государственный технический университет, Ульяновск

Ключевые слова: температурное поле, фрезерование, неравномерный шаг, фреза, твердый сплав, тепловыделение.

Аннотация. Выполнено численное моделирование технологических параметров и температурного поля процесса фрезерования периферией концевых фрез с различным шагом зубьев. Выявлена закономерность изменения мощностей источников тепловыделения и температур от шага зубьев. Установлено, что температурное поле изменяется в большей степени при изменении шага в процессе обработки с постоянной скоростью подачи.

THE EFFECT OF THE CUTTING MODE ON THE TEMPERATURE FIELD OF THE MILLING PROCESS WITH DIFFERENT TOOTH PITCH

Unyanin A.N., Chudnov A.V.

Ulyanovsk state technical university, Ulyanovsk

Keywords: temperature field, milling, uneven pitch, milling cutter, hard alloy, heat dissipation.

Abstract: Numerical modelling of the technological parameters and temperature field of the milling process by the periphery of end mills with different tooth pitch is performed. A pattern of changes in the capacities of heat sources and temperatures from the pitch of the teeth has been revealed. It has been found that the temperature field changes to a greater extent with a change in the step during processing at a constant feed rate.

Одним из средств повышения эффективности обработки фрезерованием является использование фрез с неравномерным шагом зубьев [1]. Однако существующие исследования не позволяют установить влияние шага на температуры рабочих поверхностей зуба и в поверхностных слоях заготовки.

Для моделирования температурного поля, возникающего в процессе фрезерования цилиндрическими фрезами и периферией концевых фрез, разработаны физические и математические модели, позволяющие учесть наличие трех источников тепловыделения [2, 3]. Модели учитывают наложение тепловых импульсов от отдельных зубьев, зависимость теплофизических свойств фрезы, заготовки и стружки и напряжения текучести материала заготовки от температуры, а также изменение параметров процесса в зависимости от положения зуба на поверхности контакта с заготовкой.

Дискретные аналоги уравнений теплопроводности решали численным методом конечных элементов. Расчет проводился с помощью оригинального программного обеспечения. Температура, рассчитанная в зоне деформирования (в области стружкообразования) в какой-либо момент времени, использовалась программой для расчета напряжения текучести обрабатываемого материала в последующий момент времени [2].

Численное моделирование температурного поля выполнили при следующих исходных данных: диаметр фрезы 20 мм; материал зуба фрезы –

твердый сплав RX 10; число зубьев - 3. Материал заготовки - алюминиевый сплав Д16Т; скорость резания V=7 м/с; глубина резания t=1 мм. Варьировали шагом зубьев, который принимали равным 20,93 мм, а также 18 и 24 мм. Параметры процесса фрезерования фиксировали при работе 35-го зуба, когда поверхностные слои заготовки в достаточной степени прогреты при работе предшествующих зубьев.

В таблицах 1 и 2 представлены результаты моделирования при варьировании шагом с неизменной подачей на зуб фрезы S_z .

В таблицах 3 и 4 приведены результаты, полученные при варьировании шагом с неизменной скоростью продольной подачи V_S . В данном случае S_z будет различной для фрез с различным шагом. Такая ситуация может возникнуть, в частности, при использовании фрез с неравномерным шагом зубьев.

Табл. 1. Зависимость глубины внедрения зуба и температуры деформируемого слоя от шага зубьев фрезы в различные моменты времени работы зуба: $S_z = 0,43$ мм/зуб

Шаг зубьев	Момент времени	Глубина внедрения	Температура		
_	работы зуба фрезы	зуба в заготовку a_m ,	деформируемого слоя		
t_z , MM	τ, c	МКМ	заготовки $T_{ m g}$, К		
18	$22,15\cdot 10^{-5}$	0,063	472		
20,93	$22,15\cdot 10^{-5}$	0,063	463		
24	$22,15\cdot 10^{-5}$	0,063	457,6		
18	$48,73 \cdot 10^{-5}$	0,139	388,5		
20,93	$48,73 \cdot 10^{-5}$	0,139	386		
24	$48,73 \cdot 10^{-5}$	0,139	385,2		

Табл. 2. Зависимость мощностей источников тепловыделения и температур от шага зубьев фрезы в различные моменты времени работы зуба: $S_z = 0.43 \text{ мм/зуб}$

		Мош	Мощности источников		Средняя			Темпера-
Момент		тепловыделения, Вт		температура, К на		Средняя	тура	
Шаг времени		в зоне		в зоне	площадках контакта		темпера-	заготовки,
t_z , мм	зуба	контакта	контакта зуба с	деформи-	стружки с зубом,	зуба с заготовкой,	тура на вершине	К, на
	фрезы т, с	зубом W_1	заготовкой W_2	W_{g}	T_1	T_2	зуба T_E . К	100 мкм
18	$22,15\cdot10^{-5}$	146,8	160,5	197,0	795	870	1213	461
20,93	$22,15\cdot10^{-5}$	147,9	162,5	198,3	791	866	1210	454
24	$22,15\cdot 10^{-5}$		163,7	201,8	792	868	1216	449
18	$48,73 \cdot 10^{-5}$		178,5	498,0	865	931	1263	567
20,93	$48,73 \cdot 10^{-5}$	358,4	179,0	496,8	861	925	1255	562
24	$48,73 \cdot 10^{-5}$	362,2	179,2	502,4	861	927	1259	560

В первом случае (табл. 1 и 2), в одинаковые моменты времени работы зуба глубина внедрения его в заготовку является постоянной при различном шаге. Увеличение шага приводит к увеличению периода времени между последовательно работающими зубьями. Следовательно, материал заготовки к

моменту времени вступления в работу очередного зуба успевает остыть в большей степени, поэтому с увеличением t_z температура деформируемого слоя $T_{\rm g}$ материала заготовки снижается, а напряжение текучести и сила резания результате незначительно увеличиваются. В снижается температура поверхностных слоях заготовки, и изменяются локальные температуры (см. табл. 1 и 2). Поэтому, варьирование шагом при постоянной подаче на зуб фрезы не заметному изменению параметров процесса приводит резания температурного поля.

Табл. 3. Зависимость глубины внедрения зуба и температуры деформируемого слоя от шага зубьев фрезы в различные моменты времени работы зуба: $V_S = 7$ м/мин

Шаг зубьев t_z , мм	Момент времени работы зуба фрезы т, с	Глубина внедрения зуба в заготовку a_m , мкм	Температура деформируемого слоя заготовки $T_{\rm g}$, К		
18	22,98·10 ⁻⁵	0,057	474		
20,93	$22,05\cdot 10^{-5}$	0,063	463		
24	19,98·10 ⁻⁵	0,065	486		
18	49,79·10 ⁻⁵	0,124	390		
20,93	$48,51 \cdot 10^{-5}$	0,139	386		
24	46,69·10 ⁻⁵	0,152	408		

Табл. 4. Зависимость мощностей источников тепловыделения и температур от шага зубьев фрезы в различные моменты времени работы зуба: $V_S = 7$ м/мин

	Момент	Мощности источников тепловыделения, Вт		Средняя температура, К на		Средняя	Темпера-	
Шаг зубьев	времени работы	в зоне	в зоне	в зоне	-	ках контакта	темпера-	тура заготовки,
t_z , MM	зуба	контакта стружки с	контакта зуба с	деформи- рования	стружки с зубом,	зуба с заготовкой,	тура на вершине	К, на глубине
	фрезы т, с	зубом W_1	заготовкой W_2	$W_{ m g}$	T_1	T_2	зуба T_E . К	100 мкм
18	$22,98 \cdot 10^{-5}$	131,7	160,1	176,2	799	892	1224	466
20,93	$22,05\cdot 10^{-5}$	147,9	162,5	198,3	791	866	1210	454
24	19,98·10 ⁻⁵	148,1	157,4	198,9	764	886	1372	471
18	$49,79 \cdot 10^{-5}$	317,6	178,2	437,4	849	936	1270	582
20,93	$48,51 \cdot 10^{-5}$	358,4	179,0	496,8	861	925	1255	562
24	$46,69 \cdot 10^{-5}$	382,9	174,4	533,9	853	986	1464	527

При фрезеровании с постоянной скоростью подачи V_S с увеличением шага фрезы увеличивается подача на зуб S_Z . Увеличение подачи на зуб приводит к увеличению мощностей источников тепловыделения W_1 и W_g , поэтому средние контактные температуры T_1 и T_2 для фрезы с шагом 20,93 мм выше на 8 и 7% соответственно в сравнении с фрезой шагом 18 мм.

При дальнейшем увеличении шага до 24 мм, наблюдается рост температуры деформируемого слоя материала заготовки и мощностей W_1 и $W_{\rm g}$ на 7%. Поэтому увеличились локальные температуры T_E и T_2 — на 7 и 11% соответственно, при этом незначительно снизилась температура T_1 .

Наиболее значительное влияние изменение шага зубьев в пределах от 18 до 24 мм оказывает на локальные температуры T_E и T_2 , которые повысились на 7 и 11%, а также температуру заготовки на глубине 100 мкм, которая в момент времени контакта зуба с заготовкой $\tau = 46,69 \cdot 10^{-5}$ с снизилась на 10%.

Следовательно, варьирование шагом при постоянной скорости подачи фрезы приводит к более значительному изменению температурного поля, чем при обработке с постоянной подачей на зуб фрезы.

Финансирование. Исследование выполнено за счет гранта Российского научного фонда № 24-29-00206, https://rscf.ru/project/24-29-00206/

Список литературы

- 1. Khramov A.V. Improving the performance of the processing of deep holes by improving the structure of the boring tool // IOP Conference Series: Materials Science and Engineering. 2019, vol. 709, p. 044068.
- 2. Унянин А.Н. Аналитическое исследование температурного поля при фрезеровании с наложением ультразвуковых колебаний // Вестник РГАТУ им. П.А. Соловьева. 2017. №2 (41). С. 220-235.
- 3. Резников А.Н., Резников Л.А. Тепловые процессы в технологических системах. М.: Машиностроение, 1990. 288 с.

Сведения об авторах:

Унянин Александр Николаевич – д.т.н., профессор;

Чуднов Александр Владимирович – аспирант.