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Аннотация. Рассматриваются вопросы использования реакций связей как критерия оценки 
динамического состояния механических колебательных система. Предлагаемый подход 
основан возможностях преобразования структурных схем эквивалентных в динамическом 
отношении систем автоматического управления. Трансформация таких расчетных схем 
позволяет выделить в механической колебательной систем объект защиты и отрицательную 
обратную связь, являющуюся динамической реакцией. Приведен ряд примеров амплитудно-
частотных характеристик, полученных при различных значениях жесткости одного из упругих 
элементов. 
 

DYNAMIC INTERACTIONS BETWEEN ELEMENTS OF MECHANICAL  
OSCILLATION SYSTEMS. POSSIBILITIES ESTIMATION OF FO RCE 

PARAMETERS 
 

Bolshakov R.S., Mironov A.S., Dimov A.V., Eliseev S.V., Eliseev A.V. 
Irkutsk State Transport University, Irkutsk 

 
Keywords: mechanical oscillatory system, structural diagrams, constraint reactions, dynamic state 
parameters. 
Abstract. The use of responses of constraints as a criterion for estimating the dynamic state of 
mechanical oscillatory systems is considered in the article. The proposed approach is based on the 
possibilities of transforming the structural diagrams of the dynamically equivalent automatic control 
systems. The transformation of such computational schemes makes it possible to isolate in the 
mechanical oscillatory system the object of protection and negative feedback, which is a dynamic 
reaction. A number of examples of amplitude-frequency characteristics obtained for different values 
of the stiffness of one of the elastic elements are given in the paper. 
 

Introduction 
In solving the problems of the dynamics of machines and equipment under the 

influence of vibratory external influences, in particular, in problems of vibration 
protection, the coordinates of objects whose frequency dependences are revealed in the 
frequency characteristics of the system are usually used as parameters of the dynamic 
state [1÷3]. The transfer functions of mechanical oscillatory systems reflect the basic 
properties of systems associated with the consideration of dynamic effects such as 
resonances, dynamic damping of oscillations, et al. 

At the same time, the notion of dynamic reactions of constraints arising at the 
points of connection of the elementary links of the system with each other, as well as at 
points of contact with supporting surfaces and the object of protection, are of great 
importance: Some features of the determination of dynamic reactions in mechanical 
oscillatory systems were reflected in [4, 5]. 
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In the problems of vibration protection of technical objects within the scope of the 
structural theory of oscillatory systems, the constraint reaction is interpreted as an inverse 
negative relationship in the structural diagram of the dynamically equivalent automatic 
control system. In this case, the protection object is interpreted as an integrating link of 
the second order, and physically, the inverse negative connection corresponds to the 
representation of the unit dynamic stiffness of the generalized spring [6]. 

To a lesser extent, the properties of the reactions of constraints arising at points 
of contact or connections of elements of a mechanical system with each other are 
studied. Of particular importance, in this respect, is the estimation of the values of 
dynamic reactions at characteristic points of the system that determine the reliability 
and safety of the system as a whole. In this sense, the value of constraint reactions can 
be considered as parameters of the dynamic state, as well as coordinates, velocities and 
accelerations of the movement of the protection object. 

In the present article, the features of the formation of constraint reactions in 
linear mechanical oscillatory systems with two degrees of freedom under the action of 
harmonic external perturbations in the concepts of use of reactions as parameters of the 
dynamic state of the system are considered. 
 

I. General provisions. Peculiarities of the research problem formulation 
The generalized computational scheme for solving the problems of the dynamics 

of objects in systems with two degrees of freedom is presented in Figure 1. In addition 
to the concentrated masses m1 and m2, the system contains elastic elements with 
stiffness coefficients k1, k2, k3. The system has two support surfaces I and II, which can 
perform harmonic motions z1, z2. The motion of the system is considered in the fixed 
basis using the coordinates y1 and y2. At the contact points (pp. А÷В), restraining (or 
bilateral) constraints are assumed [7]. The equation of motion of the system under the 
kinematic perturbation (Q1=0, Q2=0) has the form of 

( ) ),()( 1112221111 tQtzkykkkyym +=−++&&  (1) 
( ) ).()( 2231232222 tQtzkykkkyym +=−++&&  (2)  

 
Fig. 1. The generalized computational scheme of a mechanical oscillatory system with 
two degrees of freedom: I, II are supporting surfaces; pp. А÷В are points of contacts; 

Q1, Q2 are power perturbations; z1, z2 are the kinematic perturbations 
 

The corresponding structural diagrams in various forms of a detailed 
representation of the possibilities of their transformations are shown in Fig. 2 a÷e. 
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Construction of the structural diagrams requires a Laplace transformation [1, 2] with 
subsequent construction of structural diagrams [4÷6]. 

Using Laplace transforms, one can reduce (1), (2) to the forms: 
( ) ),(111222111

2
1 tQzkykkkyypm +=−++  (3) 

( ) ),(223123222
2

2 tQzkykkkyypm +=−++  (4) 
where p = jּω is a complex variable; , Qzy ,, , are the images of y(t), z(t) и Q(t) in the 
region of Laplace transforms. 
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Fig. 2. Variants of representation of the structural diagram: a is a structural diagram of 
a general form, corresponding to the mathematical model; b is a transformed structural 

diagram with the exception of the coordinate2y (for z2= 0, Q2=0); c is a transformed 
structural diagram with the exception of the coordinate and the removal of k2 in the 

feedback (at z2=0, Q2=0); d is a transformed structural diagram with the formation of a 
transfer function in the form of a fractional-rational expression in the scope of the 

partial system m1 ּp2+k1 (for z2=0, Q2=0, Q1=0); e is a transformed structural diagram 
with allocation of the protection object m1 as an integrating link of the second order (for 

z2=0, Q2=0, Q1=0) 
 

Fig. 2 shows the possibilities of transformation of structural diagrams with the 
identification of the necessary elements or blocks of the general structural diagram 
(Figure 2a). The determination of transfer functions for various types and combinations 
of external influences is possible on the basis of the superposition principle [1, 2]. 
Conventional methods of construction are related as rules with the selection of a 
situation where one input and one output are defined in the system. For linear systems 
with several input effects of the same frequency, transformations with the construction 
of equivalent input influences are possible. 

The research objective is to develop a method for constructing constraint 
reactions at the characteristic points of a mechanical oscillatory system and to evaluate 
the possibilities of using coupling reactions as parameters of the dynamic state of the 
protection object. 
 

II. Peculiar features of transformation of computational schemes and 
structural diagrams of the vibration system 

Let's consider variants of transformation of computational schemes, choosing 
various relationships of system parameters, possible changes in the position of support 
surfaces as shown in Fig. 3a–h. 
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Fig. 3. Variants of calculation schemes: a is a computational scheme with divided 

support surfaces; b is a computational scheme with the combined support surfaces; c – 
there are no points B and В1 (k3=0); in the computational scheme; d is a computational 
scheme with divided support surfaces for k2 = 0 и k3 = 0; e is a computational scheme 
with combined support surfaces for k2→∞(у1=у2); f is a computational scheme with 
divided support surfaces for k2→∞(у1=у2); g is a computational scheme with divided 

support surfaces for k3→∞; h is a computational scheme with divided support surfaces 

for m2→∞ and k3≠0 or k3=0 
 

The calculation scheme in Fig. 3a corresponds to the representation of the 
support surface consisting of two parts, which implies the action of various kinematic 
perturbations z1(t), z2(t) on the object of protection m1. From the side of the support 
surface I, the constraint reaction is formed by an elastic element with a stiffness k1; 
from the side of the surface II, a constraint reaction takes place on the protection object 
m1, which at the point А2 is formed by a mechanical chain of consecutively connected 
elements to k3, m2 and k2. In Fig.3b, the support surfaces I and II are combined, which 
corresponds to supporting the protection object by one "combined vibration isolator", 
which determines the overall reaction of the constraints to one support surface. For 
k3=0, as shown in Fig. 3c, in the vibration protection system at z1≠0, (Q1=0, Q2=0) the 
dynamic damping mode can appear at the protection object m1 in the kinematic form of 
the external perturbation. 

For k2=0 and k3=0, the initial computational scheme (Fig. 3a) is transformed into 
a system with one degree of freedom (Fig. 3d). For k2→∞ the form of motion of two 
masses m1 and m2 with the tendency y1→y2 (or y1=y2) is formed, and the system as a 
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whole is defined in the low-frequency range by the parameters of the motion of the 
system with one degree of freedom (m1+m2), (k1+k3). 

In Fig. 3f it is assumed that the motion for m1+m2 can occur with two perturbing 
factors z1 and z2 (Q1=0, Q2=0). In case when k3→∞, the element m2 becomes a part of 
the support surface II (Figure 3f) and the system acquires one degree of freedom. 

A similar result can be obtained for k3≠0 and m2→∞ (Fig. 3h). If k3=0, then in 
this case, for m2→∞, the system will also have one degree of freedom in the vibrational 
form of the motion. 

 

III. Determining transfer functions 
We use the calculation scheme in Fig. 1 and the structural diagram in Fig. 2a. In 

this case, the transfer functions are defined: 
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where А0 is a frequency characteristic equation 
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The kinematic perturbation in this case (the system is linear) is replaced by an 

equivalent force action 
.111. zkQ eq =  (8) 
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IV. Determining dynamic reactions of constraints at characteristic points 
(pp. A÷B) 

The calculation scheme in Fig. 1a or Fig. 3a is considered; these schemes are 
equivalent. All the relations are written in the operator form ( 21, yy ). 

The reaction at point A is determined by the formula: 
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Let us introduce the concepts of the transfer function by the constraint reaction. 
The input signal is a kinematic perturbation 1z  or an equivalent force action 

111. zkQ eq = . We obtain two transfer functions: 
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From (14), in particular, it follows that the ratio of the amplitude of the 
oscillations of the dynamic reaction to the equivalent force 1.eqQ  generated by the 
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kinematic perturbation has a form of the transfer function of the system when the input 
signal is considered to be a kinematic perturbation 1z , and displacement with respect to 
the coordinate 1y  is respectively considered to be the output signal. This is easily 
verified by structural diagrams in Fig.2.  

The reaction at point А1 is formed as a result of deformation of a linear elastic 
element (spring) with stiffness k1. In this case, we can assume that the statement “actio 
est reactio” is valid, 

,
1AA RR −=  (15)  

that is, the reactions are equal in magnitude and are directed to the opposite sides (in 
accordance with Newton's third law). However, if a mass-and-inertia element is placed 
between the points A and А1, or the mass-and-inertia properties of the spring itself are 
taken into account, then such a condition is no longer observed. Let us turn to the 
calculation scheme in Fig. 3a. It should be noted that the mass-and-inertial element m1 
is supported as follows. 

One leg of the support is an elastic element k1 with fixing points A and A1, 
respectively, to the support surface I and mass m1. The second branch is formed from 
the successive interconnections of elastic elements k2, a mass-and-inertia element m2 
and an elastic element with stiffness k3. Accordingly, the branch has contact points at 
point B with the support surface II, and at point A2 with mass m1. In this case: 

.2 BA RR ≠  (16)  

The reaction at point B can be found 
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We get two transfer functions: 

0

321

1

)(
A

kkk

Z

R
pW B

RB
==′ , (18) .)(

0

32

1.
RB A

kk

Q

R
pW

eq

B ==′′  (19) 

The reaction at point B1, where the spring k3 is in contact with the mass-and-
inertia element m2, will be determined: 

.
1 BB RR −=  (20)  

To find the reaction at point А2, it is necessary to find the unit stiffness at point 
А2. It is at this point that the second branch (k3, k2, m2) has contact with the element m1. 

The unit stiffness will be: 
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The unit stiffness reflects the dynamic stiffness of the successive chain consisting 
of k3, m2ּp

2 and k2. The features of this approach are presented in monographs [1, 2]. A 
similar result can be obtained using the structural transformations of the original 
structural diagram in Fig. 2a. In this case, on the transformed structural diagram in Fig. 
2c in the negative feedback chain with respect to the protection object with the transfer 

function 
2

1 1

1

m p k+
, has a corresponding transfer function. 



АПвМ. – 2019. – №7 

 48 

.
)(

)(
32

2
2

3
2

22
2 kkpm

kpmk
kpW USAfb ++

+==  (22)  

The expression obtained in this way completely coincides with the expression 
(19) for unit stiffness. 

Knowing the unit stiffness kA2US , we find the dynamic response at point А2 
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We introduce the transfer function for the dynamic reaction at point А2 
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The dynamic reaction at the protection object, that is, in the mass-and-inertia 
element m1, is determined by summing the reactions at points А1 and А2. 

Thus, 
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Accordingly, we obtain the transfer functions for the mass-and-inertia element m1 
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Similarly, we can find a dynamic reaction that appears on an element of mass m2. 
In this case, we can imagine that the mass m2 reflects two elastic branches at 

points В1 and В2. The dynamic reaction at the point В1 is determined by the expression 
(21). In turn, the second branch is formed by a mechanical chain of the consecutively 
connected elements k1, m1ּp

2 and k2, which allows, in accordance with the rules of 
transformation of mechanical circuits, finding the unit stiffness at the point В2 
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From (29) we determine the dynamic reaction at the point В2 
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The transfer functions of dynamic constraints at the point В2 take the form: 
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The total dynamic reaction formed on the mass-and-inertia element m2 is 
determined as the sum of two dynamic reactions 1BR  and 1BR . Thus, we finally write 
down that 
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The transfer functions of the dynamic constraints for the mass-and-inertia 
element m2 will take the form: 

.
)(

])()[(

021
2

1

21213
2

13221

1

2

2 Akkpm

kkkkkpmkkkk

z

R
W m

Rm ++
++++==′  (34)  

.
)(

])()[(

021
2

1

21213
2

1322

1.

2

2 Akkpm

kkkkkpmkkk

Q

R
W

eq

m
Rm ⋅++

+++⋅+==′′  (35)  

Preliminary analysis (35) allows establishing the properties of the amplitude-
frequency characteristic (AFC), which are determined by the fact that: 

1. The dynamic reaction 2mR  takes extreme values three times (twice at 
frequencies of natural oscillations or at resonances, and also at the partial frequency 
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m

kk +=ω ); 

2. At the oscillation frequency determined from the frequency equation of the 
numerator (35), a mode of the dynamic mode is formed, which could be called the 
"zeroing of the dynamic reaction"; in addition, the frequency is defined by the 
expression 
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Conclusion 
1. Dynamic constraint reactions can serve as parameters of the state of a 

mechanical oscillatory system as well as known forms of estimation based on the use of 
kinematic parameters. 

2. The dynamic reaction of the constraints at the selected point of the system is 
defined in the operator form as the product of the displacement by the unit dynamic 
stiffness and carries information about the features of the resonance modes and the 
dynamic damping of the oscillations. 

3. Methods of structural transformations are proposed for obtaining dynamic 
reactions, which are based on the use of the parameters of the feedback chains formed 
with respect to the selected mass-and-inertia elements. 

4. The effect of the maximum of the constraint reaction is discovered, which is 
physically treated as an increase in the unit dynamic stiffness at the frequency 
corresponding to the mode of dynamic damping of oscillations. 
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